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Abstract. Photovoltaic energy is expanding due to its generation performance, cost, and useful life. In this sense, it is 
essential to develop models and techniques that can improve the efficiency of systems. Analytical, metaheuristic, and 
hybrid methods have been used to estimate the parameters of Single-Diode Model (SDM) and Double-Diode Model 
(DDM), but none solve all the problems, thus requiring the development of new techniques. In this work, the Swarm 
MVMO method was used to estimate the parameters of the double diode model using data from the photovoltaic cell 
RTC France. The results obtained show that Swarm MVMO was effective, reaching the same level of RMSE as other 
algorithms in the literature and achieving a good fit in the I-V and P-V curves. 
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1. INTRODUCTION 

 
Photovoltaic energy has an impact on generation and is increasing significantly. Its attractiveness is mainly due to 

its generation performance, cost, and useful life. During its useful life, the photovoltaic system is exposed to various 
environmental conditions that can result in a gradual decrease in performance, failures, and loss of power (Aghaei et al., 
2022). In this sense, the development of photovoltaic models allows the control, optimization, and prediction of energy, 
which constitute essential tools for the integration of systems into the grid (Elhammoudy et al., 2023). Some research 
has been conducted in an attempt to enhance photovoltaic efficiency, with particular emphasis placed on the estimation 
of photovoltaic model parameters. Adjusted parameters have the potential to enhance system performance, rendering 
this topic notably pertinent (Yu et al., 2022). 

The mathematical models of the single-diode model (SDM) and double-diode model (DDM) are the most used to 
define a solar cell (Oliva et al., 2017) (Ramadan et al., 2022). SDM is the most used in studies due to its simplicity and 
precision, however, DDM provides greater precision at higher levels of solar irradiance by including the recombination 
losses that occur in the depletion zone (Ridha et al., 2022). Examples of the application of the models can be seen in 
Ćalasan, Aleem, and Zobaa (2021) and Sharadga, Hajimirza and Cari (2021). 

In the literature, the three main methods applied to estimating photovoltaic parameters are listed: analytical, 
metaheuristic, and hybrid as can be seen in Elkholy and Abou (2019), Nguyen et al. (2022), Gao et al. (2021), 
respectively. Analytical methods are based on the derivation of mathematical equations that provide a simple and quick 
way to identify and calculate photovoltaic parameters (Diab et al., 2020). Meta-heuristic methods convert the 
photovoltaic module parameter estimation problem into an optimization problem due to their non-linear, limited, and 
continuous characteristics (Saadaoui et al., 2021). Hybrid methods were developed due to the limitations of 
metaheuristics. These methods can achieve greater accuracy as they combine the best of both methods, but there is 
greater computational effort and implementation difficulty (Ridha et al., 2021). 

Although optimization techniques have been researched and tried in the literature, none solve all problem types. 
New optimization techniques must be employed to evaluate performance in different benchmark function types 
(Premkumar et al., 2021). Despite the meta-heuristic algorithms obtaining sufficiently satisfied results in parameter 
estimation of PV models, no algorithm is perfect (Long et al., 2022). In this regard, the mathematical modeling of PV 
systems and the estimation of model parameters with appropriate optimization algorithms is still an existing challenge 
and continues at a greater pace (Demirtas and Koc, 2022). This research proposes the Swarm Mean-Variance Mapping 
Optimization algorithm (Swarm MVMO) to estimate the parameters of a PV cell with literature-reported data using 
DDM. The Swarm MVMO is a type of evolutionary algorithm that focuses on optimizing a single solution, in contrast 
to other evolutionary algorithms that work with a group of solutions (Shouman, Hegazy, and Omran, 2021). 

 
 

2. PHOTOVOLTAIC MODEL 
 
The basic photovoltaic model, SDM, has 5 unknown parameters that must be determined for an adequate 

representation of the I -V characteristics, however, this model does not represent all physical aspects. Its equivalent 
electrical circuit is composed of a direct current source (Iph), a diode (D1), a resistance in parallel (Rsh), and another in 
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series (Rs). The current flowing through the diode can be represented by two parameters: the ideality factor (a1) and 
reverse saturation current (Is1) (Ćalasan, Aleem, and Zobaa, 2021). DDM, shown in Fig. 1, is based on SDM where only 
a second diode is added in parallel with the current source to investigate the recombination loss of the space charge 
regions of the p – n junction (Nguyen, Nguyen, and Tran, 2022). Diode D1 simulates the minority carrier diffusion 
process in the depletion layer, while D2 represents carrier recombination in the space charge region of the junction (Gao 
et al., 2016). The DDM has 7 unknown parameters: Iph, Is1, Is2, a1, a2, Rs, and Rsh. 

 

 
 

Figure 1- DDM electric circuit (Nguyen, Nguyen, and Tran, 2022). 
 

 Applying Kirchhoff’s current law on the circuit of Fig. 1, the cell output current (Ic) is given by solving the 
implicit Eq. 1, where Ish is the shunt resistor current. The diode currents ID1 and ID2 represent diffusion and 
recombination currents expressed by the Shockley equation according to Eqs. 2 and 3. 

 𝐼௣௛ − 𝐼஽భ
− 𝐼஽మ

− 𝐼௦௛ − 𝐼௖ = 0 (1) 
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where Is1 and Is2 are the diode reverse saturation current of diodes D1 and D2 respectively, q is the electron charge 
(1.60217646 × 10-19 C), Vc is the cell output voltage, a1 and a2 are the diode ideality factor of diodes D1 and D2 
respectively, k is the Boltzmann constant (1.3806503 × 10-23 J/K), and Tc is the cell temperature (K). Finally, the shunt 
resistor current is given by Eq. 4. 
 

 𝐼௦௛ =
𝑉௖ + 𝑅௦𝐼௖

𝑅௦௛

 (4) 

 
 
3. SWARM MEAN-VARIANCE MAPPING OPTIMIZATION (SWARM MVMO) 

 
MVMO is a population-based stochastic optimization technique. Its similarity with differential evolution 

algorithms, genetic algorithms, and particle swarm optimization which uses the ideas of selection, mutation, and 
crossover, however, as the main characteristic of the MVMO method, the transformation of mutated genes is based on 
the mean and variance of the best individuals in the population (Erlich, Venayagamoorthy, and Worawat, 2010). To 
improve the global search capability, the swarm concept is incorporated into the MVMO method (Swarm MVMO). 
This way, multiple particles will be part of the estimation process. Particles are made up of individuals and individuals 
are made up of genes (Rueda and Erlich, 2013a and Rueda and Erlich, 2013b). 

The method begins in the setup step where the algorithm parameters are configured and random samples of 
optimization variables are generated within their specified search limits for a total number of particles (NP) (candidate 
solutions) and stored in a solution archive. Then, the optimization variables are normalized, transforming the search 
space for all variables into the range between 0 and 1. This normalization is a prerequisite for the mutation operation 
through the mapping function and ensures that the generated descendants do not violate search limits. Finally, the 
optimization variables are denormalized again before the fitness evaluation or local search processes are executed. At 
each evaluation, the solution file is updated based on whether the particles are classified as good or bad and the process 
ends when the termination criterion is satisfied (Rueda and Erlich, 2013b). Fig. 2 shows the Swarm MVMO flowchart 
where i is the function evaluation counter, c is the particle counter, m is the number of particles, and imax is the 
maximum number of fitness function evaluations. 
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Figure 2- Swarm MVMO flowchart including the solution archive with all NP particles (adapted from Rueda and 
Erlich, 2013b). 

 
In the fitness evaluation phase, the measurement data obtained from the photovoltaic system is applied to the 

photovoltaic model considering each individual of the particles generated in the previous step and the results are 
evaluated in the fitness function described in Eq. 5 (based on the Root Mean Square Error - RMSE). Then, according to 
the results of the fitness function, individuals are ranked from the lowest to the highest value of the fitness function in 
each particle. 
 

 𝐽(𝑝) = ඩ
1

𝑀
෍ 𝑓(𝑢, 𝑦, 𝑝)ଶ

ெ

௝ୀଵ

 (5) 

 
where p is the estimated parameter vector Eq. 6, M is the number of samples of measurement data, u is the input vector 
of the model according to Eq. 7, y is the output vector of the model according to Eq. 8, and f(u, y, p) is the implicit 
model function of DDM described by Eq. 9. 
 

 𝑝 = [𝐼௣௛ , 𝐼௦ଵ, 𝐼௦ଶ, 𝑎ଵ, 𝑎ଶ, 𝑅௦, 𝑅௦௛] (6) 

 

 𝑢 = [𝑉௖(𝑡), 𝑇௖] (7) 

 



X Congresso Brasileiro de Energia Solar – Natal, 27 a 31 de maio de 2024 

 𝑦 = [𝐼௖(𝑡)] (8) 

 

 𝑓(𝑢, 𝑦, 𝑝) = 𝐼௣௛ − 𝐼௦ଵ ቊ𝑒𝑥𝑝 ቈ
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𝑎ଵ𝑘𝑇௖

቉ − 1ቋ − 𝐼௦ଶ ቊ𝑒𝑥𝑝 ቈ
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𝑎ଶ𝑘𝑇௖

቉ − 1ቋ −
𝑉௖ + 𝑅௦𝐼௖

𝑅௦௛

− 𝐼௖ (9) 

 
The individual of each particle that presents the lowest value of the fitness function is classified as the local best. 

Particles are classified by their respective local best individuals, from lowest value to highest value. The particle 
containing the local best individual with the lowest value of fitness function is classified as the global best. Two groups 
are formed according to the particle classification: the good particles (GP) and the bad particles (BP). These groups are 
based on the multi-parent strategy of the offspring stage for the next generation. Equations 10 and 11 present the father 
for the GP and BP groups, respectively. Fig. 3 shows the offspring creation of bad particles according to Eq. 11 
including the mutation process by mapping function with local mean and variance. 
 

 𝑥௣
௣௔௥௘௡௧

= 𝑥௜ (10) 

 

 𝑥௣
௣௔௥௘௡௧

= 𝑥௞ + 𝛽(𝑥௜ − 𝑥௝) (11) 

 

 
 

Figure 3 - Offspring generation stage for BP (Rueda and Erlich, 20132). 
 
where 𝑥௣

௣௔௥௘௡௧ is the father of GP or BP, Xi is the global best in the GP group, Xj is the last particle of the GP group, Xk 
is a random particle in the GP group, and β is a random number between 0 to 1 to re-draw the elements. In the crossover 
step, a random number of genes (in this work each gene refers to a DDM parameter) is chosen for mutation originating 
𝑋௣

௖௥௢௦௦. The strategy of this stage is based on roulette wheel tournament selection. Finally, in the mutation step, the 
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chosen genes, are submitted to the mapping function. The new individual is determined by Eq. 12, where 𝑥௣
∗  is a 

random number between 0 to 1 and h represents the mapping function described by Eq. 13 with hp, h1, and h0 as the 
outputs of the mapping function, according to Eq. 14. The shape factor calculated by Eq. 15 is based on variance, where 
fs is the scaling factor. More information about MVMO can be found in Erlich, Venayagamoorthy, and Worawat, 
(2010). 

 𝑥௣
௡௘௪ = ℎ௣ + (1 − ℎଵ + ℎ଴)𝑥௣

∗ − ℎ଴ (12) 

 ℎ(𝑥̅, 𝑠ଵ, 𝑠ଶ, 𝑥) = 𝑥̅(1 − 𝑒ି௫௦భ) + (1 − 𝑥̅)𝑒ି(ଵି௫)௦మ  (13) 

 ℎ௣ = ℎ൫𝑥 = 𝑥௣
∗ ൯,          ℎ଴ = ℎ(𝑥 = 0),          ℎଵ = ℎ(𝑥 = 1) (14) 

 𝑠ଵ ௢௥ ଶ = −ln (𝑣௜)𝑓௦ (15) 

The factors s1, s2, and 𝑥̅ define the format of the mapping function curve. The graph of Fig. 4a displays the 
influence of 𝑥̅ on the mapping function curve plotted for individuals’ values of 0, 0.25, 0.5, 0.75, and 1. In the graph of 
Fig. 4b, 𝑥̅ is fixed in 0.5 (mean between 0 to 1) to display the influence of s1 and s2 when they have the same values (s1 
= s2). The decrease in variance given by Eq. 15 increases the shape factor and makes the mapping function curve flatter, 
so the space to be searched is focused on the region near to mean value. In this graph, the mapping function curve is 
plotted for shape factor values of 0, 5, 10, 15, and 50. On the one hand for the shape factor equal to 0, every value 
assigned to 𝑥௣

∗  (random) will generate a different value of xp. On the other hand, for a shape factor equal to 50, any 
value assigned to 𝑥௣

∗  (random) will generate a value close to the mean of xp. Fig. 4c and 4d show the influence of s1 and 
s2 when they have different values, which makes the curve of the mapping function asymmetric. 
 

 
Figure 4 – Mapping function: influence of mean and variance (Erlich, Venayagamoorthy, and Worawat, 2010). 
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4. RESULTS AND DISCUSSION 
 

The performance of Swarm MVMO for PV parameter estimation of DDM is conducted using the PV dataset 
widely studied in the literature as can be seen in Yaghoubi et al. (2022), Ramadan, Khan, and Diab (2022), Huynh, 
Dunnigan, and Barbalata (2022), and Demirtas and Koc, (2022). This dataset contains the I - V measurement from an 
RTC France silicon solar cell with a diameter of 57 mm obtained in Easwarakhanthan et al. (1986) under G = 1000 
W/m2 and T = 33º C. The settings of Swarm MVMO, described in Tab. 1, are based on Erlich, Venayagamoorthy, and 
Worawat, (2010), Rueda and Erlich, (2013a), and Rueda and Erlich, (2013b). The search limits of each parameter, also 
described in Tab. 1, are based on Yaghoubi et al. (2022) and Bo et al., (2022). Matlab R2022b using an 11th Gen Intel® 
Core™ i5-11400 @ 2.60 GHz 2.59 GHz, 24 GB RAM with Windows(R) 11, 64 bits was used for the simulations. 

 
Table 1 – Setup of Swarm MVMO. 

 
Description Value 

Number of parameters to be estimated (pn) 7 
Number of individuals per particle (Xn) 5 
Maximum number of fitness evaluations (imax) 50000 
Number of particles (m) 105 
Simulations number (runs) 30 
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Iph (A) 0 – 1 
Is1 (µA) 0 – 1 
Is2 (µA) 0 – 1 
a1 (-) 1 – 2 
a2 (-) 1 – 2 
Rs (Ω) 0 – 0.5 
Rsh (Ω) 0 – 100 

 
The lower RMSE value of the 30 runs was 0.986E−03 which estimated the best PV parameters. The highest 

RMSE value was 1.422439E−03, the average value was 1.113071E−03 and the STD was 1.092937E−04. Fig. 5 shows 
the RMSE values of each run and the average time for one run was 146 seconds.  

 

 
Figure 5 – RMSE values per run. 

 
Table 2 shows the best-estimated parameter values and their corresponding values in the literature references for 

comparison purposes. Swarm MVMO reached the same levels of the RMSE values from the literature. The estimated 
value for the Iph, Rs, and Rsh parameters varied the least compared to other algorithms in the literature, however, the 
parameter values of Is1, Is2, a1, and a2 did not maintain this uniformity. The I - V and P - V curves with the best 
parameters are shown in Figs. 6 and 7, where the measured values and the estimated values are found in a good fit. The 
dataset with Vmea, Imea, Iest, Iae, Pmea, and Pest are related in Tab. 3 where can be seen the low value of the sum of the 
absolute error and the RMSE of current and power. 
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Table 2 – Estimated parameters and literature reference values from other algorithms. 

 
Algorithm Iph (A) Is1 (µA) Is2 (µA) a1 (-) a2 (-) Rs (Ω) Rsh (Ω) RMSE 

Swarm MVMO 0.7608 0.3079 0.0574 1.4773 1.8521 0.0364 53.9285 0.986E-03 
MSSA 0.7608 0.9731 0.1679 1.9213 1.4281 0.0369 53.8368 0.983E-03 
RN-ChOA 0.7608 0.2228 0.7272 1.4512 2.0000 0.0364 55.4264 0.972E-03 
QRMSCS 0.7608 0.2260 0.0749 1.4510 2.0000 0.0367 55.4854 0.982E-03 
CJAYA4 0.7607 0.3030 0.3160 1.4769 1.9965 0.0362 57.0983 0.983E-03 
INFO 0.7608 0.7493 0.2260 2.000 1.4510 0.0367 55.4854 0.982E-03 
Note: Modified Salp Swarm Algorithm (MSSA) from Yaghoubi et al. (2022). Robust Niching 
Chimp Optimization Algorithm (RN-ChOA) from Bo et al., (2022). Chaotic JAYA (CJAYA4) 
from Premkumar (2021). Weighted mean of vectors optimization algorithm (INFO) from Demirtas 
and Koc, (2022). 

 
 

 
Figure 6 – Measured and estimated data: I – V curve. 

 
 

 
Figure 7 – Measured and estimated data: P – V curve. 
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The Swarm MVMO proved to be an efficient algorithm in estimating the parameters of the DDM reaching the 

same RSME values in the literature. However, its behavior along each iteration may vary, as shown in Fig. 5 where we 
can see the RMSE values per run. Although DDM achieved low RMSE values, this model had a large oscillation that is 
attributed to the large number of parameters to be estimated and the nature of the Swarm MVMO algorithm that 
generates the initial population randomly within the limits established for each parameter. Similar behavior can be seen 
in Demirtas and Koc, (2022) and Premkumar et al., (2021). 

 
Table 3 – Comparison between measured and estimated data. 

 
Item Vmea (V) Imea (A) Iest (A) |Iae| (A) Pmea (W) Pest (W) |Pae| (W) 

1 -0.2057  0.7640  0.7641  0.0001  -0.1572  -0.1572  0.0000 
2 -0.1291  0.7620  0.7627  0.0007  -0.0984  -0.0985  0.0001 
3 -0.0588  0.7605  0.7614  0.0009  -0.0447  -0.0448  0.0001 
4 0.0057  0.7605  0.7602  0.0003  0.0043  0.0043  0.0000 
5 0.0646  0.7600  0.7591  0.0009  0.0491  0.0490  0.0001 
6 0.1185  0.7590  0.7581  0.0009  0.0899  0.0898  0.0001 
7 0.1678  0.7570  0.7571  0.0001  0.1270  0.1270  0.0000 
8 0.2132  0.7570  0.7562  0.0008  0.1614  0.1612  0.0002 
9 0.2545  0.7555  0.7551  0.0004  0.1923  0.1922  0.0001 
10 0.2924  0.7540  0.7537  0.0003  0.2205  0.2204  0.0001 
11 0.3269  0.7505  0.7514  0.0009  0.2453  0.2456  0.0003 
12 0.3585  0.7465  0.7474  0.0009  0.2676  0.2679  0.0003 
13 0.3873  0.7385  0.7401  0.0016  0.2860  0.2866  0.0006 
14 0.4137  0.7280  0.7274  0.0006  0.3012  0.3009  0.0002 
15 0.4373  0.7065  0.7070  0.0005  0.3090  0.3092  0.0002 
16 0.4590  0.6755  0.6753  0.0002  0.3101  0.3100  0.0001 
17 0.4784  0.6320  0.6309  0.0011  0.3023  0.3018  0.0005 
18 0.4960  0.5730  0.5721  0.0009  0.2842  0.2838  0.0005 
19 0.5119  0.4990  0.4995  0.0005  0.2554  0.2557  0.0003 
20 0.5265  0.4130  0.4135  0.0005  0.2174  0.2177  0.0003 
21 0.5398  0.3165  0.3172  0.0007  0.1708  0.1712  0.0004 
22 0.5521  0.2120  0.2121  0.0001  0.1170  0.1171  0.0001 
23 0.5633  0.1035  0.1027  0.0008  0.0583  0.0579  0.0004 
24 0.5736  -0.0100  -0.0092  0.0008  -0.0057  -0.0053  0.0004 
25 0.5833  -0.1230  -0.1244  0.0014  -0.0717  -0.0725  0.0008 
26 0.5900  -0.2100  -0.2092  0.0008  -0.1239  -0.1234  0.0005 

Sum of absolute error 0.0177  0.0067 
RMSE 0.0008  0.003 

 
 
5. CONCLUSION 
 

Swarm MVMO proved to be adequate and effective for estimating DDM photovoltaic parameters, presenting an 
RMSE of 0.986E-03, a value close to those found in the literature. This low error allowed the parameters obtained in 
Swarm MVMO to achieve a good fit in the I-V and P-V curves between the measured and estimated data. Although the 
Swarm MVMO method presents good results adequacy in estimation processes, as it is a heuristic and non-deterministic 
method, with each new simulation, different values are calculated for the parameters, although limited between the 
maximum and minimum values, which generates different values of RMSE. In future work, the non-linear method will 
be applied together with Swarm MVMO so that it is possible to refine the parameter estimation results. 
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