A ARTE E A CIÊNCIA DA INTEGRAÇÃO DA ENERGIA FOTOVOLTAICA NO AMBIENTE CONSTRUÍDO – PARTE 1
INVESTIGAÇÃO TEÓRICA
DOI:
https://doi.org/10.59627/cbens.2022.1193Palavras-chave:
Integração fotovoltaica no ambiente construído, Avaliação estética, Interpretações da arquiteturaResumo
A crescente utilização de módulos fotovoltaicos (FV) nos envelopes das edificações vêm alterando as formas dos ambientes construídos. Com toda a informação técnica disponível, é possível alcançar uma qualidade de integração arquitetônica satisfatória; no entanto, para explorar o máximo potencial de integração da tecnologia fotovoltaica, características não-técnicas também devem ser consideradas. É necessário que arquitetos e engenheiros saibam como a utilização de módulos fotovoltaicos em edificações pode ser interpretada a partir de teorias de percepção arquitetônica. A tradição da crítica da arquitetura fotovoltaica é objetiva e explora as características visuais das construções. Entretanto, a essência da arquitetura é o vazio do espaço o qual pessoas experimentam. Este estudo é dividido em dois artigos: Parte 1: investigação teórica e Parte 2: estudo de caso. A Parte 1 define as interpretações tradicionais da arquitetura fotovoltaica e propõe um método para identificar como a percepção dos sistemas fotovoltaicos influencia a experiência espacial, ou seja, como eles afetam o movimento das pessoas nos espaços arquitetônicos. A proposta é ir além da tradição e completar os estudos existentes, já que a crítica arquitetônica deve considerar tanto as características visuais das construções quanto a teoria dos espaços vazios. A Parte 2 do trabalho demonstra a aplicação do método a um estudo de caso, as edificações do Centro de Pesquisa e Capacitação em Energia Solar da Universidade Federal de Santa Catarina (Laboratório Fotovoltaica/UFSC). Os resultados pretendem servir de inspiração, expandindo o uso de módulos fotovoltaicos como forma de expressão arquitetônica e estreitando a lacuna entre cientistas e arquitetos.
Downloads
Referências
Alberton, J. O. (2021). The Place of Poetics in the Teaching of Project in Architecture and Urbanism Courses: Social Imaginary and Education. Federal University of Santa Maria.
Bahaj, A. S., James, P. A. B., & Jentsch, M. F. (2007). Photovoltaics: added value of architectural integration. Proceedings of the Institution of Civil Engineers - Energy, 160(2), 59–69. https://doi.org/10.1680/ener.2007.160.2.59
Becker, G., Flade, F., Krippner, R., Schiebelsberger, B., & Weber, W. (2018). High Quality Solutions of Building-Integrated Photovoltaics (BIPV) – Results of the World Wide Competition in 2017. 35th European Photovoltaic Solar Energy Conference and Exhibition, 1828–1832. https://doi.org/10.4229/35thEUPVSEC20182018-6BV.1.42
Becquerel Institute. (2019). BIPV market and stakeholder analysis 2019. https://bipvboost.eu/public-reports/
Bonomo, P., De Berardinis, P., & Frontini, F. (2013). Analysis of BIPV case-studies through a multicriteria evaluation tool. 28th European Photovoltaic Solar Energy Conference and Exhibition, 4373–4379. https://doi.org/10.4229/28thEUPVSEC2013-5CV.7.12
Celadyn, W., & Filipek, P. (2020). Investigation of the Effective Use of Photovoltaic Modules in Architecture. Buildings, 10(145), 20. https://doi.org/10.3390/buildings10090145
Cronemberger, J., Corpas, M. A., Cerón, I., Caamaño-Martín, E., & Sánchez, S. V. (2014). BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses. Energy and Buildings, 83, 44–56. https://doi.org/10.1016/j.enbuild.2014.03.079
Custódio, I., Zomer, C., & Rüther, R. (2020). A worldwide approach to the LESO-QSV method for assessing the visual impacts of solar systems in urban environments. Solar Energy, 212(July), 178–190. https://doi.org/10.1016/j.solener.2020.10.067
De Berardinis, P., & Bonomo, P. (2012). Towards a system for evaluation of the project of PV integration in buildings. BIPV.tool. 27th European Photovoltaic Solar Energy Conference and Exhibition, 4183–4187. https://doi.org/10.4229/27thEUPVSEC2012-5BV.1.5
Devetaković, M., Djordjević, D., Radojević, M., Krstić-Furundžić, A., Burduhos, B. G., Martinopoulos, G., Neagoe, M., & Lobaccaro, G. (2020). Photovoltaics on landmark buildings with distinctive geometries. Applied Sciences, 10(19), 22. https://doi.org/10.3390/app10196696
EPBD recast. (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02010L0031-20210101
Florio, P., Roecker, C., & Munari Probst, M. C. (2015). Urban acceptability of solar installations: LESO-QSV GRID, a software tool to support municipalities. CISBAT 2015 International Conference “Future Buildings and Districts - Sustainability from Nano to Urban Scale,” 981–986. https://doi.org/10.13140/RG.2.1.2017.0728
Gadamer, H.-G. (2015). Verdade e Método I: Traços fundamentais de uma hermenêutica filosófica (Vozes & Editora Universitária São Francisco (eds.); 15th ed.).
Gehl, J. (2015). Cidades para Pessoas (Perspectiva (ed.); 3rd ed.).
Hagemann, I. (1996a). Architectural considerations for building-integrated photovoltaics. Progress in Photovoltaics: Research and Applications, 4, 247–258. https://doi.org/10.1002/(SICI)1099-159X(199607/08)4:4<247::AID-PIP135>3.0.CO;2-E
Hagemann, I. (1996b). PV in buildings - the influence of PV on the design and planning process of a building. Renewable Energy, 8(1–4), 467–470. https://doi.org/10.1016/0960-1481(96)88900-2
Hagemann, I. (2004). Examples of successful architectural integration of PV: Germany. Progress in Photovoltaics: Research and Applications, 12(6), 461–470. https://doi.org/10.1002/pip.561
IEA PVPS. (1997). Task 7 - Photovoltaic power systems in the built environment.
IEA SHC. (2012). Task 41 A.2 - Solar Energy Systems in Architecture: integration criteria and guidelines. https://task41.iea-shc.org/Data/Sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture-28March2013.pdf
IEA SHC. (2018). Task 51 C.3 - Lessons Learnt from Case Studies of Solar Energy in Urban Planning. https://doi.org/10.18777/ieashc-task51-2018-0003
IRENA. (2021). Renewable Capacity Statistics 2021 International Renewable Energy Agency (IRENA).
Kaan, H., & Reijenga, T. (2004). Photovoltaics in an architectural context. Progress in Photovoltaics: Research and Applications, 12(6), 395–408. https://doi.org/10.1002/pip.554
Kosoric, V., Wittkopf, S., & Huang, Y. (2011). Testing a design methodology for building integration of photovoltaics (PV) using a PV demonstration site in Singapore. Architectural Science Review, 54(3), 192–205. https://doi.org/10.1080/00038628.2011.590052
Krstić-Furundžić, A., Scognamiglio, A., Devetakovic, M., Frontini, F., & Sudimac, B. (2020). Trends in the integration of photovoltaic facilities into the built environment. Open House International, 45(1–2), 195–207. https://doi.org/10.1108/OHI-04-2020-0015
Lobaccaro, G., Croce, S., Lindkvist, C., Munari Probst, M. C., Scognamiglio, A., Dahlberg, J., Lundgren, M., & Wall, M. (2019). A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies. Renewable and Sustainable Energy Reviews, 108, 209–237. https://doi.org/10.1016/j.rser.2019.03.041
Munari Probst, M. C., & Roecker, C. (2015). Solar Energy Promotion & Urban Context Protection: Leso-QSV (Quality-Site-Visibility) Method. Plea 2015: Architecture in (R)Evolution.
Munari Probst, M. C., & Roecker, C. (2019). Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method. Solar Energy, 184(September 2018), 672–687. https://doi.org/10.1016/j.solener.2019.03.031
Munari Probst, M. C., & Roecker, C. (2011). Urban acceptability of building integrated solar systems: LESO-QSV approach. 30th ISES Biennial Solar World Congress 2011, SWC 2011, 6, 4359–4367. https://doi.org/10.18086/swc.2011.27.10
Pelle, M., Lucchi, E., Maturi, L., Astigarraga, A., & Causone, F. (2020). Coloured BIPV Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies, 13(17), 21. https://doi.org/10.3390/en13174506
Peng, C., Huang, Y., & Wu, Z. (2011). Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and Buildings, 43(12), 3592–3598. https://doi.org/10.1016/j.enbuild.2011.09.032
Polo Lopez, C., Frontini, F., Bonomo, P., & Scognamiglio, A. (2014). PV and façade systems for the building skin. Analysis of design effectiveness and technological features. 29th European Photovoltaic Solar Energy Conference and Exhibition, 3613–3618. https://doi.org/10.4229/EUPVSEC20142014-6DO.7.3
Rasmussen, S. E. (2015). Arquitetura Vivenciada (Martins Fontes (ed.); 3rd ed.).
Rosa, F. (2020). Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints. Energies, 13(14), 28. https://doi.org/10.3390/en13143628
Rüther, R. (2004). Edifícios solares fotovoltaicos: o potencial da geração solar fotovoltaica integrada a edificações urbanas e interligada à rede elétrica pública no Brasil. In UFSC/LABSOLAR (Ed.), UFSC/LABSOLAR (1st ed.).
Sánchez-Pantoja, N., Vidal, R., & Pastor, M. C. (2018). Aesthetic perception of photovoltaic integration within new proposals for ecological architecture. Sustainable Cities and Society, 39, 203–214. https://doi.org/10.1016/j.scs.2018.02.027
Santos, I. P. dos. (2013). Desenvolvimento de Ferramenta de Apoio à Decisão em Projetos de Integração Solar Fotovoltaica à Arquitetura [Federal University of Santa Catarina]. https://fotovoltaica.ufsc.br/Teses/Tese_Isis_Portolan_dos_Santos.pdf
Schoen, T., Prasad, D., Ruoss, D., Eiffert, P., & Sørensen, H. (2000). Status Report of Task 7 of the EIA PV Power Systems Program. 18th European Photovoltaic Solar Energy Conference and Exhibition, 1–4.
Scognamiglio, A. (2016). “Photovoltaic landscapes”: Design and assessment. A critical review for a new transdisciplinary design vision. Renewable and Sustainable Energy Reviews, 55, 629–661. https://doi.org/10.1016/j.rser.2015.10.072
Scognamiglio, A. (2021). A trans-disciplinary vocabulary for assessing the visual performance of BIPV. Sustainability, 13(10), 38. https://doi.org/10.3390/su13105500
Scognamiglio, A., & Garde, F. (2016). Photovoltaics’ architectural and landscape design options for Net Zero Energy Buildings, towards Net Zero Energy Communities: spatial features and outdoor thermal comfort related considerations. Progress in Photovoltaics: Research and Applications, 24, 477–495. https://doi.org/10.1002/pip.2563
Scognamiglio, A., & Privato, C. (2008). Starting points for a new cultural vision of BIPV. 23rd European Photovoltaic Solar Energy Conference, 3222–3233. https://doi.org/10.4229/23rdEUPVSEC2008-5BP.1.5
Scognamiglio, A., & Røstvik, H. N. (2012). Photovoltaics and zero energy buildings: a new opportunity and challenge for design. Progress in Photovoltaics: Research and Applications, 21(6), 1319–1336. https://doi.org/10.1002/pip.2286
Scott, G. (1914). The Architecture of Humanism: a Study in the History of Taste (T. and A. Constable (ed.)). Houghton Mifflin Harcourt.
SUPSI, & Becquerel Institute. (2020). Building Integrated Photovoltaics: A practical handbook for solar buildings’ stakeholders. Status Report 2020.
Tablada, A., Kosorić, V., Huang, H., Lau, S. S. Y., & Shabunko, V. (2020). Architectural quality of the productive façades integrating photovoltaic and vertical farming systems: Survey among experts in Singapore. Frontiers of Architectural Research, 9(2), 301–318. https://doi.org/10.1016/j.foar.2019.12.005
Torres-Sibille, A. del C., Cloquell-Ballester, V. A., Cloquell-Ballester, V. A., & Artacho Ramírez, M. Á. (2009). Aesthetic impact assessment of solar power plants: An objective and a subjective approach. Renewable and Sustainable Energy Reviews, 13(5), 986–999. https://doi.org/10.1016/j.rser.2008.03.012
Urbanetz, J., Zomer, C. D., & Rüther, R. (2011). Compromises between form and function in grid-connected, building-integrated photovoltaics (BIPV) at low-latitude sites. Building and Environment, 46(10), 2107–2113. https://doi.org/10.1016/j.buildenv.2011.04.024
Vezzani, S., Marino, B. F. M., & Giora, E. (2012). An early history of the Gestalt factors of organisation. Perception, 41, 148–167. https://doi.org/10.1068/p7122
Xu, R., & Wittkopf, S. (2015). Visual assessment of BIPV retrofit design proposals for selected historical buildings using the saliency map method. Journal of Facade Design and Engineering, 2(3–4), 235–254. https://doi.org/10.3233/fde-150022
Xu, R., Wittkopf, S., & Roeske, C. (2017). Quantitative evaluation of BIPV visual impact in building retrofits using saliency models. Energies, 10(5). https://doi.org/10.3390/en10050668
Zevi, B. (2009). Saber Ver a Arquitetura (WMF Martins Fontes (ed.); 6th ed.).
Zomer, C., Custódio, I., Antoniolli, A., & Rüther, R. (2020). Performance assessment of partially shaded building-integrated photovoltaic (BIPV) systems in a positive-energy solar energy laboratory building: Architecture perspectives. Solar Energy, 211(September), 879–896. https://doi.org/10.1016/j.solener.2020.10.026
Zomer, C., Custódio, I., Goulart, S., Mantelli, S., Martins, G., Campos, R., Pinto, G., & Rüther, R. (2020). Energy balance and performance assessment of PV systems installed at a positive-energy building (PEB) solar energy research centre. Solar Energy, 212(November), 258–274. https://doi.org/10.1016/j.solener.2020.10.080
Zomer, C. D., Costa, M. R., Nobre, A., & Rüther, R. (2013). Performance compromises of building-integrated and building-applied photovoltaics (BIPV and BAPV) in Brazilian airports. Energy and Buildings, 66, 607–615. https://doi.org/https://doi.org/10.1016/j.enbuild.2013.07.076
Zomer, C., Nobre, A., Cassatella, P., Reindl, T., & Rüther, R. (2014). The balance between aesthetics and performance in building-integrated photovoltaics in the tropics. Progress in Photovoltaics: Research and Applications, 22, 744–756.