COMPARISON OF ELECTRICAL CHARACTERISTICS OF N+NP+ SOLAR CELLS WITH TiO2 ANTIREFLECTION COATING DEPOSITED BY EVAPORATION AND CHEMICAL VAPOR DEPOSITION

Authors

  • José Cristiano Mengue Model Pontifícia Universidade Católica do Rio Grande do Sul
  • Adriano Moehlecke Pontifícia Universidade Católica do Rio Grande do Sul
  • Izete Zanesco Pontifícia Universidade Católica do Rio Grande do Sul
  • Moussa Ly Pontifícia Universidade Católica do Rio Grande do Sul
  • Sérgio Boscato Garcia Pontifícia Universidade Católica do Rio Grande do Sul
  • Jéssica de Aquino Pontifícia Universidade Católica do Rio Grande do Sul
  • Thais Crestani Pontifícia Universidade Católica do Rio Grande do Sul
  • Ricardo Augusto Zanotto Razera Pontifícia Universidade Católica do Rio Grande do Sul

DOI:

https://doi.org/10.59627/cbens.2016.1277

Keywords:

Anti-reflection coating, Titanium dioxide, n-type silicon solar cells

Abstract

The boron doping of silicon wafers for solar cell production was established as standard in 1960 years, as a result of the initial use of these devices in space applications. However, it was demonstrated that doping with boron throughout the substrate can produce problems of degradation of electrical characteristics of the solar cells used in terrestrial applications. In addition, in the crystalline silicon n-type wafers, doped with phosphorus, higher minority carrier lifetime was observed, providing the fabrication of high efficiency solar cells. The aim of this work was to compare the electrical characteristics of n+np+ solar cells with TiO2 anti-reflection coating (ARC) obtained by evaporation in high vacuum with electron beam (E-beam) and by chemical vapor deposition under atmospheric pressure (APCVD). The solar cells with ARC deposited by APCVD obtained higher average efficiency, due to a larger fill factor, provided by an effective etch-trough of this film by Ag metallic paste. The most efficient solar cells presented efficiencies of 14.7% for both deposition processes used.

Downloads

Author Biography

José Cristiano Mengue Model, Pontifícia Universidade Católica do Rio Grande do Sul

Faculdade de Física,
Núcleo de Tecnologia em Energia Solar

References

Aberle, A., 2000. Surface passivation of crystalline silicon solar cells: a review. Progress in Photovoltaics: Research and Applications, vol. 8, pp. 473-487.

Davis, K.O., Jiang, K., Habermann, D., Schoenfeld, W.V., 2015. Tailoring the optical properties of APCVD Titanium oxide films for all-oxide multilayer antireflection coatings. IEEE Journal of Photovoltaics, vol. 5, n. 5, pp. 1265- 1270.

Fagundes, R. S., Moehlecke, A., Zanesco, I., Ly, M., Jimeno, J. C., Serrano, J.R.G., 2014. Comparação de filmes antirreflexo de TiO2 depositados por diferentes técnicas para células solares de silício. V CBENS - V Congresso Brasileiro de Energia Solar, Recife. 10p.

Glunz, S. W., Rein, S., Lee, J. Y., Warta, W., 2001. Minority carrier lifetime degradation in boron-doped Czochralski silicon. Journal of Applied Physics, vol. 90, n. 5, pp. 2397-2404.

Macdonald, D., 2012. The emergence of n-type silicon for solar cell manufacture. 50th Annual Conference, Australian Solar Energy Society, Melbourne, Australia, pp. 1-6.

Moehlecke, A., Zanesco, I., 2015. Desenvolvimento de células solares eficientes em lâminas de silício tipo n. Relatório Técnico. Projeto FINEP 2102/09.

Rahman, Z.R., Khan, S.I., 2012. Advances in surface passivation of c-Si solar cells. Materials for Renewable and Sustainable Energy, DOI 10.1007/s40243-012-0001-y, 11p.

Richards, B.S., 2003. Single-material TiO2 double-layer antireflection coatings. Solar Energy Materials & Solar Cells, vol. 79, pp. 369-390.

Richards, B.S., 2004. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review. Progress in Photovoltaics: Research and Applications, vol. 12, pp. 253-281.

Richards, B. S., Cotter, J. E., Honsberg, C. B., 2002. Enhancing the surface passivation of TiO2 coated silicon wafers. Applied Physics Letters, vol. 80, n. 7, pp. 1123-1125.

Schmiga, C., Rauer, M., Rüdiger, M., Meyer, K., Lossen, J., Krokoszinski, H.-J., Hermle, M., Glunz, S.W., 2010.

Aluminium-doped p+ silicon for rear emitters and back surface fields: results and potentials of industrial n-and ptype solar cells. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Espanha, pp. 1163–1168.

Serrano, J.R.G., 2001. Contribución al Estudio de las Características Eléctricas de Metalizaciones de Células Solares Realizadas por Técnicas Serigráficas, Tese de Doutorado, Escuela Superior de Ingenieros de Bilbao, Universidad del País Vasco, Bilbao. 301p.

Temescal, 2000. Manual: System Evaporation Electron Beam and Filament. 10 kV, BJD2000. 150p.

Thomson, A.F., Mcintosh, K.R., 2011. Light-enhanced surface passivation of TiO2 – coated silicon. Progress in Photovoltaics: Research and Applications, vol. 20, n. 3, pp. 343-349.

Veschetti, Y., Schutz-Kuchly, T., Manuel, S., Gall, S., Heslinga, D., 2010. High efficiency solar cells by optimization of front surface passivation on n-type rear Al alloyed emitter structure. 25th European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Espanha, pp. 2265-2267.

Wei, Y., Li, P., Wang, Y., Tan, X., Song, C., Lu, C., Zhao, Z., Liu, A., 2015. Quality improvement of screen-printed Al emitter by using SiO2 interfacial layer for industrial n-type silicon solar cells. Solar Energy, vol. 118, pp. 384-389

Published

2016-12-13

How to Cite

Model, J. C. M., Moehlecke, A., Zanesco, I., Ly, M., Garcia, S. B., Aquino, J. de, Crestani, T., & Razera, R. A. Z. (2016). COMPARISON OF ELECTRICAL CHARACTERISTICS OF N+NP+ SOLAR CELLS WITH TiO2 ANTIREFLECTION COATING DEPOSITED BY EVAPORATION AND CHEMICAL VAPOR DEPOSITION. Anais Congresso Brasileiro De Energia Solar - CBENS, 1–7. https://doi.org/10.59627/cbens.2016.1277

Issue

Section

Anais