DEFINIÇÃO DO ARREFECIMENTO MODULAR PARA DESENVOLVIMENTO E MODELAGEM DE USINA FOTOVOLTAICA ARREFECIDA

Autores

  • Vinícius Oliveira da Silva Universidade de São Paulo
  • André Luiz Veiga Gimenes Universidade de São Paulo
  • Miguel Edgar Morales Udaeta Universidade de São Paulo
  • Luiz Claudio Ribeiro Galvão Universidade de São Paulo

DOI:

https://doi.org/10.59627/cbens.2016.1278

Palavras-chave:

SFV, Energia Solar, Fotovoltaico/Térmico,, Sistema de Arrefecimento Fotovoltaico, UFV

Resumo

O trabalho tem por objetivo analisar arquiteturas e unidades modulares de arrefecimento de sistemas fotovoltaicos compostos por Módulos Fotovoltaicos (PV), visando determinar, selecionar e adequar um sistema modular tal que seja utilizado em escala em uma usina solar fotovoltaica (UFV) instalada em local de baixa latitude no noreoeste do estado de São Paulo, de modo a aumentar seu rendimento na produção de energia elétrica (intitulada de usina fotovoltaica arrefecida). A metodologia se dá pela analise das condições climáticas, geográficas e solares da região de instalação da UFV, dos aspectos construtivos, de operação e manutenção do sistema de arrefecimento. Um estudo exaustivo e sistemático do desenvolvimento de sistemas de arrefecimento pelo mundo afora em que se identificam três tipos principais, coletor PVT-líquido e/ou a ar, PV ventilado com recuperação de calor e sistema não PVT. Sendo que o resultado mais evidente conduz a opção pelo sistema PVT-líquido devido à região de instalação ser de clima tropical quente e seco com temperatura ambiente e índice de irradiação solar elevados, e, disponibilidade do fluido refrigerante predefinido. Concluindo que a arquitetura e os arranjos determinativos para desenvolvimento de um módulo arrefecedor são do tipo serpentina e múltiplo-canais, por permitem a boa troca de calor entre o fluido refrigerante e o módulo PV.

Downloads

Não há dados estatísticos.

Biografia do Autor

Vinícius Oliveira da Silva, Universidade de São Paulo

Grupo de Energia do Departamento de Engenharia de Energia e Automação Elétricas da Escola Politécnica da Universidade de São Paulo

Referências

Bazilian M., Leeders F., van der Ree B. G. C., Prasad D. Photovoltaic cogeneration in the built environment. Solar Energy 2001;71:57–69.

CEPAGRI (Brasil). Centro de Pesquisas Meteorológicas e Climáticas Aplicadas a Agricultura. UNICAMP, Campinas, Brasil, 2015b. Acessado em maio/2015 <http://www.cpa.unicamp.br/outras-informacoes/clima_muni_236.html>

Charalambous PG, Maidment GG, Kalogirou SA, Yiakoumetti K. Photovoltaic thermal (PV/T) collectors: a review. Applied Thermal Engineering 2007;27: 275–8.

Chow TT, He W, Ji J. Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol Energy 2006;80(3):298–306.

Dubey, S., Sarvaiya, J. N., Seshadri, B.; Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world - A review. Energy Procedia; 2013. (33) p. 311-321

Eicker U, Fux V, Infield D, Li M. Heating and cooling of combined PV-solar air collectors facades. In: Proceedings of international conference of 16th European PV solar energy; 2000. p. 1836–9.

Elnozahy, A., Rahman, A. K. A., Ali, A. H. H., Abdel-Salam, M., Ookawara, S.; Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. In: Energy and Buildings, 2015, (88) p. 100-109.

Endecon Engineering: Energy technology development division, consultant report, a guide to photovoltaic (PV) system design and installation. California Energy Commission; 2001. p. 1–40.

Feng, C., Zheng, H., Wang, R., Yu, X., Su, Y.; A novel solar multifunctional PV/T/D system for green building roofs. In: Energy Conversion and Management, 2015, (93) p. 63-71.

Hasan M. A., Sumathy k.; Photovoltaic thermal module concepts and their performance analysis: A review; Renewable and Sustainable Energy Reviews 14 (2010) 1845–1859.

Kawajiri K, Oozeki T, Genchi, Y. Effect of Temperature on PV Potential in the World. Environmental Science and Technology 2011;45:9030-5.

Krauter S. Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells 2004;82:13–37.

Kumar, A., Baredar, P., Qureshi, U.; Historical and recent development of photovoltaic thermal (PVT) technologies. In: Renewable and Sustainable Energy Reviews, 2015, (42) p. 1428-1436.

Makrides G., Zinsser B., Georghiou G. E., Schubert M., Werner J. H., Temperature behavior of different photovoltaic systems installed in Cyprus and Germany. Solar Energy Materials & Solar Cells 93 (2009) 1095-1099.

Meral, M. E., Dinçer, F.; A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. Yuzuncu Yil University, Department of Electrical and Electronics Engineering, Van, Turkey, 2011.

Odeh S., Behnia M., Improving Photovoltaic Module Efficiency Using Water Cooling, Heat Transfer Engineering, (2009), 30:6, 499-505, DOI: 0.1080/01457630802529214.

Oh, J., Samy, G., Mani, T.; Temperature Testing and Analysis of PV Modules Per ANSI/UL 1703 and IEC 61730 Standards, Conference Record of the IEEE Photovoltaic Specialists Conference, Program - 35th IEEE Photovoltaic Specialists Conference, PVSC 2010, p 984-988, (2010).

Prakash J. Transient analysis of a photovoltaic thermal solar collector for cogeneration of electricity and hot air water. Energy Conversion and Management, 1994;35:967–72.

Prieb, C. W. M.; Desenvolvimento de um Sistema de Ensaio de Módulos Fotovoltaicos; Dissertação para Obtenção do Título de Mestre em Engenharia, UFERGS, Junho de 2002.

Shenck N. S., Alternative energy systems. U.S. Naval Academy Lecture Readings, 2010.

TEE, Tools for Electrical engineering, e-learning: http://e-lee.ist.utl.pt.

Teo, H. G., Lee, P. S., Hawlader M. N. A.; An active cooling system for photovoltaic modules, Applied Energy, 90, 309-315, (2012). Elnozahy, A., Rahman, A. K. A., Ali, A. H. H., Abdel-Salam, M., Ookawara, S.; Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. In: Energy and Buildings, 2015, (88) p. 100-109.

Endecon Engineering: Energy technology development division, consultant report, a guide to photovoltaic (PV) system design and installation. California Energy Commission; 2001. p. 1–40.

Feng, C., Zheng, H., Wang, R., Yu, X., Su, Y.; A novel solar multifunctional PV/T/D system for green building roofs. In: Energy Conversion and Management, 2015, (93) p. 63-71.

Hasan M. A., Sumathy k.; Photovoltaic thermal module concepts and their performance analysis: A review; Renewable and Sustainable Energy Reviews 14 (2010) 1845–1859.

Kawajiri K, Oozeki T, Genchi, Y. Effect of Temperature on PV Potential in the World. Environmental Science and Technology 2011;45:9030-5.

Krauter S. Increased electrical yield via water flow over the front of photovoltaic panels. Solar Energy Materials and Solar Cells 2004;82:13–37.

Kumar, A., Baredar, P., Qureshi, U.; Historical and recent development of photovoltaic thermal (PVT) technologies. In: Renewable and Sustainable Energy Reviews, 2015, (42) p. 1428-1436.

Makrides G., Zinsser B., Georghiou G. E., Schubert M., Werner J. H., Temperature behavior of different photovoltaic systems installed in Cyprus and Germany. Solar Energy Materials & Solar Cells 93 (2009) 1095-1099.

Meral, M. E., Dinçer, F.; A review of the factors affecting operation and efficiency of photovoltaic based electricity generation systems. Yuzuncu Yil University, Department of Electrical and Electronics Engineering, Van, Turkey, 2011.

Odeh S., Behnia M., Improving Photovoltaic Module Efficiency Using Water Cooling, Heat Transfer Engineering, (2009), 30:6, 499-505, DOI: 0.1080/01457630802529214.

Oh, J., Samy, G., Mani, T.; Temperature Testing and Analysis of PV Modules Per ANSI/UL 1703 and IEC 61730 Standards, Conference Record of the IEEE Photovoltaic Specialists Conference, Program - 35th IEEE Photovoltaic Specialists Conference, PVSC 2010, p 984-988, (2010).

Prakash J. Transient analysis of a photovoltaic thermal solar collector for cogeneration of electricity and hot air water. Energy Conversion and Management, 1994;35:967–72.

Prieb, C. W. M.; Desenvolvimento de um Sistema de Ensaio de Módulos Fotovoltaicos; Dissertação para Obtenção do Título de Mestre em Engenharia, UFERGS, Junho de 2002.

Shenck N. S., Alternative energy systems. U.S. Naval Academy Lecture Readings, 2010.

TEE, Tools for Electrical engineering, e-learning: http://e-lee.ist.utl.pt.

Teo, H. G., Lee, P. S., Hawlader M. N. A.; An active cooling system for photovoltaic modules, Applied Energy, 90, 309-315, (2012).

Unesp (Brasil), Universidade Estadual Paulista, 2013. Acessado em agosto/2013 <http://clima.feis.unesp.br/recebe_formulario.php>

Usama Siddiqui, M,. Arif, a. F M., Kelley, L., Dubowsky, S.; Three-dimensional thermal modeling of a photovoltaic module under varying conditions. In: Solar Energy, 2012, 9(86) p. 2620-2631.

van Helden W. G. J., van Zolingen R. J. Ch, Zondag H. A.; PV thermal systems: PV panels supplying renewable electricity and heat. In: Prog. Photovolt: Res. Appl. 2004; 12:415–426 (DOI: 10.1002/pip.559).

Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA. The yield of different combined PV-Thermal collector designs. Solar Energy 2003; 74(3): 253–269.

Unesp (Brasil), Universidade Estadual Paulista, 2013. Acessado em agosto/2013 <http://clima.feis.unesp.br/recebe_formulario.php>

Usama Siddiqui, M,. Arif, a. F M., Kelley, L., Dubowsky, S.; Three-dimensional thermal modeling of a photovoltaic module under varying conditions. In: Solar Energy, 2012, 9(86) p. 2620-2631.

van Helden W. G. J., van Zolingen R. J. Ch, Zondag H. A.; PV thermal systems: PV panels supplying renewable electricity and heat. In: Prog. Photovolt: Res. Appl. 2004; 12:415–426 (DOI: 10.1002/pip.559).

Zondag HA, De Vries DW, Van Helden WGJ, Van Zolingen RJC, Van Steenhoven AA. The yield of different combined PV-Thermal collector designs. Solar Energy 2003; 74(3): 253–269.

Downloads

Publicado

2016-12-13

Edição

Seção

Anais