INNOVATIVE DESIGN OF LOW-COST SOLAR ROOF FOR HOUSEHOLD HEATING AND COOLING

Autores

  • Luis E. Juanicó Investigador Conicet y Profesor Instituto Balseiro

DOI:

https://doi.org/10.59627/cbens.2008.1610

Palavras-chave:

Energía Solar, Arquitectura Solar, Calefacción Solar, Enfriamiento Natural

Resumo

Se presenta un diseño innovativo de techo solar adaptable al entorno, que permite proveer de calefacción y refrigeración pasivas a una vivienda familiar a un costo competitivo respecto de un techo convencional de similar (muy buen) desempeño térmico. Para lograr esto se plantearon originales sinergias entre el colector solar y el techo en si mismo, modificando fuertemente este último, creando un techo fuertemente configurable mediante la redistribución de agua. En este sentido, quizás el aporte más valioso del nuevo diseño sea el proponer un nuevo paradigma respecto del actual paradigma (profundamente arraigado) del techo tradicional, permitiendo explorar nuevas dimensiones alternativas de hábitat adaptables al entorno.

Downloads

Não há dados estatísticos.

Biografia do Autor

Luis E. Juanicó, Investigador Conicet y Profesor Instituto Balseiro

Investigador Conicet y Profesor Instituto Balseiro, Centro Atómico Bariloche, Argentina

Referências

Baer, S. and Mingenbach, W. 2002. Passive heating and cooling system. U.S. patent Nº 6,357,512. See also: http://www.zomeworks.com/tech/doubleplay/index.html.

Belusko, M., Saman, W. and Bruno, F. 2004. Roof integrated solar heating system with glazed collector. Solar Energy 76, 61-69.

Evans John M. 2004. Zonificación bioambiental en latinoamérica para una arquitectura sustentable. Avances en Energías Renovables y medio Ambiente. 8 (1), 05.163-05.168

Fernandez Gonzalez, A. 2005. Economic Analysis of the Cost Effectiveness of Passive Solar Heating Strategies in the Midwest of the U.S. Proceeding of the 2005 World Solar Congress, Aug. 6-12, Orlando, Florida.

Haggard Kenneth et al. 1978. Application of the Skytherm System to a Moderate Density Office Building. Proceedings of the 2nd Passive Solar Conference, ASES/ISES, Philadelphia, Pennsylvania, U.S.

Hassan Marwa and Beliveau Yvan. 2006. Design, construction and performance prediction of integrated solar roof collectors using finite element analysis. Construction and Buildings materials, in press.

Hay H.R., Yellott, J.I. 1969. International aspects of air conditioning with moveable insulation. Solar Energy 1969; 12(4), 427-430.

Hay H.R. 1977. A Passive Heating and Cooling System from Concept to Commercialization. Proc. Annual Meeting of the American Society of ISES.

Jain Dilip. Modeling of solar passive techniques for roof cooling in arid regions. 2006. Building and Enviranment, 41, 277-287.

Juanicó Luis. 2006. Techo Solar. Solicitud de patente de invención argentina NºP060104453.

Juanicó, Luis. 2007. A new design of low-cost configurable awning for thermal gain. Presentado en ISES World Solar Congress 2007, Beijing, China, setiembre 2007.

Juanicó, Luis. 2008. A new design of roof-integrated water solar collector. Solar Energy Vol.82, pp.481-492.

for domestic heating and cooling

Manz, H., Brunnera, S. and Wullschleger, L. 2006. Triple vacuum glazing: Heat transfer and basic mechanical design constraints. Solar Energy 80 (12), 1632-1642

Medved S., Arkar C. y Cerne B., 2003. A large-panel unglazed roof-integrated liquid solar collector-energy and economic evaluation. Solar Energy 75, 455-467.

Smeds J. and Wall M.. 2007. Enhanced energy conservation in houses through high performance design. Energy and Buildings 39(3), 273-278.

Tsilingiris P. T. 2003. Comparative evaluation of the infrared transmission of polymer films. Energy Conversion and Management 44 (18), 2839-2856.

Vokas G., Christandonis N. and Skittides F. 2003. Hybrid photovoltaic-thermal systems for domestic heating and cooling. A theoretical approach. Solar Energy 80, 607-615.

Wall M.. 2006. Energy-efficient terrace houses in Sweden. Simulations and measurements. Energy and Buildings 38, 627-634

Publicado

2008-11-10

Edição

Seção

Anais