AVALIAÇÃO DO CICLO DE VIDA DE TECNOLOGIAS FOTOVOLTAICAS

PANORAMA ATUAL DO TEMPO DE RETORNO DE INVESTIMENTO EM ENERGIA E CUSTOS ASSOCIADOS

Autores

  • Sandra Harumi Fukurozaki Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo
  • José Octavio Armani Paschoal Instituto de Pesquisas Energéticas e Nucleares, Universidade de São Paulo

DOI:

https://doi.org/10.59627/cbens.2010.1668

Palavras-chave:

Energia renovável, energia solar, avaliação do ciclo de vida, tempo de retorno de investimento em energia

Resumo

Nas últimas duas décadas, o setor de energia fotovoltaica apresentou um significativo progresso em termos de capacidade anual de produção, inicialmente resultante dos avanços tecnológicos e conseqüentes melhorias no desempenho ambiental do seu ciclo de vida. Sob esta perspectiva, este trabalho apresenta uma análise crítica dos estudos de Avaliação do Ciclo de Vida (ACV) de tecnologias e sistemas de fotovoltaicos (FV), realizados nos últimos 10 anos. Particular atenção foi dedicada para o indicador de desempenho do sistema - Tempo de Retorno de Investimento em Energia (Energy Payback Time - EPBT). O objetivo principal deste estudo consiste em providenciar estimativas atuais e consistentes sobre o EPBT de diferentes tecnologias e sistemas FV, além de apresentar o estado da arte e os custos associados. As tecnologias FV existentes no mercado atual podem retornar o investimento em energia consumida no sistema nos primeiros anos (< 2 anos) de operação. Avanços nas tecnologias de produção são identificados como os fatores chaves para a redução do custo de investimento. Ademais, políticas ambientais e de suporte econômico são reconhecidas por favorecerem a crescente inserção de tecnologias FV no mercado energético.

Downloads

Não há dados estatísticos.

Referências

Alsema, E. A. Energy requirements of thin-film solar cell modules — a review. Renewable Sustainable Energy Rev. 2 (1998), pp. 387–415.

Alsema, E. A. Energy requirements and CO 2 mitigation potential of PV systems. In: Photovoltaics and Environment 1998, BNL/NREL, Keystone, CO (1999).

Alsema, E. Energy Payback Time and CO2 Emissions of PV Systems. Prog. Photovol.: Res. Appl. (2000):8, pp.17-25.

Alsema, E. A. and Nieuwlar, E. Energy viability of photovoltaics systems. Energy Policy 28, (2000); pp.999-100.

Alsema, E. A.; de Wild-Scholten, M. Environmental Impact of Crystalline Silicon Photovoltaic Module Production. Presented at Materials Research Society Symposium, Boston, Nov. (2005) 0895-G03–05.

Alsema E. A. and Wild-Schoten, M.J. Reduction of Environmental Impacts in Crystalline Silicon Photovoltaic Technology: An Analysis of Driving Forces and Opportunities. Materials Research Society. Symposium Proceedings Volume 1041 (2008), pp3-12.

Alsema E. A., Fraile D., Frischknecht R., Fthenakis V., Held M., Kim H.C., Pölz W., Raugei M., de Wild Scholten M. Methodology Guidelines on Life Cycle Assessment of Photovoltaic Electricity, Subtask 20 "LCA", IEA PVPS Task 12. (2009).

Bauman, H and Tillman, A. The Hitch Hiker's Guide to LCA. An Orientation in Life Cycle Assessment Methodology and Application, Studentlitteratur, Lund, Sweden (2004).

Dones R, Frischknecht R. Life-cycle assesment of photovoltaic studies: results of swiss studies on energy chains. Progress in Photovoltaics: Research and Applications (1998) 6: 117-125.

Energy Information Administration (EIA). Solar Photovoltaic Cell/Module Manufacturing Activities 2007. December, 2008, (2009) pp. 1-28. http:www.eia.doe.gov/fuelrenewable.html.

Fthenakis, V.M.; Alsema, E.A. Wild-Schoten, M.J.. Life Cycle Assessment of Photovoltaics: perceptions, needs and challenges. 31st IEE Photovoltaics Specialists Conference, Jan 3-7, (2005).

Fthenakis,V.M. and Alsema, E. Photovoltaics Energy Payback Time, Greenhouse Gas Emissions and External Costs: 2004-early 2005 Status. Prog. Photovol.: Res. Appl. (2006); 14, pp. 275-280.

Fthenakis, V. M.; Kim, H.C. and Alsema E. Emissions from photovoltaic life cycles. Environmental Science and Technology 42 (6) (2008), pp. 2168–2174.

Fthenakis, V. M; Zweibel, R. and Mason, J. The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the United States, Energy Policy 37 (2) (2009), pp. 387–399.

Hall C. A. S., C. J. Cleveland, and R. K. Kaufmann Energy and Resource Quality: The Ecology of the Economic Process, Wiley Interscience, New York. (1986)

Hay, K. et al., Comparison of solar cell production technologies through their economic impact on society. In: 15th IEEE PV Specialists Conference, Kissimmee, FL (1981), pp. 267–272.

Herendeen, R.A. Net energy considerations. In: West, R.E. and Kreith, F., Eds Economic Analysis of Solar Thermal Energy Systems. The MIT Press,Cambridge, MA, USA, (1988), pp. 255-273.

Hendrickson, C. T; Lave, L.B.;Matthews, H.S. Environmental Life Cycle Assessment of Goods and services: an Input Output Approach. (2006). Washington, DC: RFF Press Book.

Hoffmann, W"PV solar electricity industry: Market growth and perspective. Solar Energy Materials and Solar Cells 90(18-19), (2006),pp. 3285-3311.

Huber, W. and Kolb, G. Life cycle analysis of silicon –based photovoltaic systems. Solar Energy 54 (3), (1995), pp.153-163.

Hunt, L. Total energy use in the production of silicon solar cells from raw materials to finished product. In: 12th IEEE PV Specialists Conference, Baton Rouge, LA (1976), pp. 347–352.

Huettner, D.A. Net energy analysis: an economic assessment. Science192(4235) (1976), pp. 101-104

International Organization for Standardization (ISO). Environmental management - Life cycle assessment - Requirements and guidelines. ISO 14044(1997); First edition, Geneva.

IEA – PVSP. International Energy Agency/ Photovoltaic Power Systems Programme. Trends in PV Application in Selected IEA CounEPBTs between 1992 and 2000, report IEA-PVPS 1-10: (2001).

OCDE/IEA. Organization for Economic Co-operation and Development – OCDE/ International Energy Agency -IEA. Renewable for Power Generation: Status and Prospects. Paris, (2003), pp. 53-73.

IEA – PVPS. International Energy Agency/ Photovoltaic Power Systems Programme. Trends in Photovoltaic Applications: survey report of selected IEA countries between 1992 and 2008. Report IEA-PVPS T1-18: (2009).

IFIAS . International Federation of Institutes for Advanced Studies.,Report on the Workshop on Energy Analysis and Economics (in Lindigoe, Sweden, June 1975). Resources and Energy 1 (1978), pp. 151–204.

Jungbluth N; Bauer C; Dones, R and Frischknecht, R. Life Cycle Assessment for Emerging technologies: Case studies for Photovoltaic and Wind Power . Int. J. LCA 10; 1,(2005), pp. 24-34.

Jungbluth, N. Life cycle assessment of crystalline photovoltaics in the Swiss ecoinvent database Prog. Photovolt: Res. Appl.,(2005) 13 429 446.

Jungbluth N, Dones, R and Frischknecht, R. Life cycle Assessment of Photovoltaics: update of the ecoinvent database. Mater.Res.Soc.Symp.Proc.Vol.1041. Materials Research Society, (2008).

Kato, K., Murata, A., Sakuta, K. Energy payback time and life cycle CO2 emission of residential PV power system with PVmodule. Prog. Photovoltaics: Res. Appl. 6 (1998), pp. 105-115.

Kantner, J.; Mileva, A. and Kammen, D. Solar Photovoltaics In: GIGATON Throwdown 2009. Redefining What’s Possible for Clean Energy by 2020. The Gigaton Throwdown Initiative, San Francisco, 141pp. http://www.gigatonthrowdown.org.

Keoleian, G. and Lewis, G. Application of life-cycle energy analysis to photovoltaic module design. Prog. Photovoltaics: Res. Appl. 5 4 (1997), pp. 287–300.

Knapp K, Jester T. Empirical investigation of the energy payback time for photovoltaic modules. Solar Energy 2001; 71: 165-172.

Klöpffer, W. In defense of the cumulative energy demand (editorial). International Journal of Life Cycle Assessment 2 2 (1997), p. 61.

Mason, J.M.; Fthenakis, V.M.; Hansen T. and Kim, H.C. Energy pay-back and life cycle CO2 emissions of the BOS in an optimized 3.5 MW PV installation, Progress in Photovoltaics Research and Applications 14 (2006), pp. 179–190.

Meier PJ. Life-cycle assessment of electricity generation systems and applications for climate change policy analysis. Fusion Technology Institute, University of Wisconsin: Madison, USA, (2002).

Meijer, A.; Huijbregts, M. A. J.; Schermer, J. J.; Reijnders, L.Life-cycle assessment of photovoltaic modules: Comparison of mc-Si, InGaP and InGaP/mc-si solar modules Prog. Photovolt: Res. Appl. (2003) 11 275 287.

Meridian Corporation. Energy System Emissions and Material Requirements, for the U.S. Department of Energy, Deputy Assistant Secretary for Renewable Energy, Washington, D.C., February, (1989)

Nieuwlaar, E.; Alsema, E. and B. van Engelenburg, Using life-cycle assessments for the environmental evaluation of greenhouse gas mitigation options, Energy Conversion and Management 37 (1996) (6–8), pp. 831–836.

Odum, H.T. Energy, ecology and economics, Royal Swedish Academy of Science. AMBIO 2 (6) (1973), pp. 220-227.

Patel, M. Cumulative energy demand (CED) and cumulative CO2 emissions for products of the organic chemical industry. Energy 28 (2003), pp.721-740.

Pacca, S. Sivaraman, D.; Keoleian, G. A. Parameters affecting the life cycle performance of PV technologies and systems. Energy Policy 35, (2007), pp. 3316-3326.

Phylipsen, G.J.M and Alsema E.A. Environmental life-cycle assessment of multicrystalline silicon solar cell modules. Report 95057, Department of Science, Technology and Society, Utrecht University, Utrecht, (1995).

Raugei, M.; Bargigli S. and Ulgiati, S. Life cycle assessment and energy pay-back time of advanced photovoltaic modules. CdTe and CIS compared to poly-Si. Energy 32 (2007), pp. 1310–1318.

Raugei, M. and Frankl, Paolo. Life cycle impacts and costs of photovoltaics: current state of the art and future outlooks. Energy, 34 (2009), pp. 392-399.

Shaefer, H. and Hagerdon, G. Hidden Energy and Correlated Environmental Characteristics of PV Generation. Renewable Energy, Vol.2, N. 2 (1991) pp. 159-166.

Sinke, W. C. The CRYSTALCLEAR Integrated Project: next generation crystalline silicon technology from lab to production, Proceedings 20th European Photovoltaic Solar Energy Conference (2005).

Singh, P. P and Sukhmeet, S. Realistic generation cost of solar photovoltaic electricity. Renewable Energy 35 (2010), pp. 563-569.

Solarbuzz – Índice de preços de eletricidade solar. Disponível em http://www.solarbuzz.com/solarindices.htm .

Tainter, J.A.; Allen, T.F.H.; Little, A. and Hoekstra, T.W Resources transitions and energy gain: contexts of organization, Conservation Ecology 7 (2003) (3), pp.1-17.

Wenham , S. R.; Green, M. A.; Watt, M.E. and Corkish, R. Applied Photovoltaics Earthscan, UK, (2007). pp.53-69.

Wild-Schoten, M.J. and Alsema E.A, ter Horst, E. W.; Bachler, M.; Fthenaskis, V. M. A cost and environment impact comparasion grid-connected rooftoop and ground-based PV systems. European Photovoltaics Solar Energy Conference, Dresden, Germany, 4-8 September ( 2006.)

Wilson, R. and Young, A. Embodied energy payback period of photovoltaic installations applied to buildings in the UK. Build. Environ. 31 4 (1996), pp. 299–305.

Downloads

Publicado

2010-10-21

Como Citar

Fukurozaki, S. H., & Paschoal, J. O. A. (2010). AVALIAÇÃO DO CICLO DE VIDA DE TECNOLOGIAS FOTOVOLTAICAS: PANORAMA ATUAL DO TEMPO DE RETORNO DE INVESTIMENTO EM ENERGIA E CUSTOS ASSOCIADOS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2010.1668

Edição

Seção

Anais