• E. M. do Sacramento Universidade Estadual do Ceará
  • L. C. de Lima Universidade Estadual do Ceará
  • P. C. M. Carvalho Universidade Federal do Ceará



Energia Solar, Hidrogênio, Energia Eólica


The hydrogen society is a term that have received world notoriety. This is due to increas- ing on costs to obtain fossil fuels and the emission of many pollutants to atmosphere, mainly green house gases. A portion of climates changes is directly related with these emissions, causing serious damages on human survival.


Não há dados estatísticos.


Barbir, F., 1999. Review of Hydrogen Conversion technologies, Report, Clean Energy research Institute, University of Miami, Coral Gables, U.S.A.;

Barbir, F., 2001. Safety issues of hydrogen in vehicles, Report, West Palm Beach, U. S. A., Energy Partners;

Benemann, J. R., 2000. Hydrogen Production by microalgae, Journal of Applied Phycology, vol.12, pp. 291-300;

Bolton, J. R., 1996. Solar Photoproduction of Hydrogen, Hydrogen Program of the International Energy Agency, Subtrack C, Annex 10;

Da Silva, E. P., 1991. Introdução à Tecnologia e Economia do Hidrogênio;

Doctor, R. D. and Molburg, J. C., 2004. Clean hydrogen from coal with CO2 capture and sequestration. In the hydrogen energy transition: moving toward the post petroleum age in transportation. Edited by D. Sperling and J. S. Cannon, Burlington, MA, Elsevier Academic Press;

Dillon A.C., Gennett T., Alleman J.L., Jones K.M., Parilla P.A., Heben M.J., 2000. Carbon nanotube materials for hydrogen storage, In: Proceedings of the 2000 DOE/NREL hydrogen program review, May 8-10( pdfs/28890kkk.pdf);

Dillon A.C., Jones K.M., Bekkedahl T.A., Kiang C.H., Bethune D.S.,Heben M.J., 1997. Storage of hydrogen in single-walled carbon nanotubes, Nature, vol. 386, pp. 377–379;

Lopes, R. A., Célula combustível a hidrogênio, a necessidade de novas fontes de energia, Eficiência Energética.

Murray, S., 2003.The Hydrogen Hurdle The Status of and Pathways to a Safe, Feasible, and Sustainable Fuel Infrastructure for the Hydrogen Fuel Cell Vehicle via Public Policy and Codes and Standards, ASME International;

Prince-Richard, S., 1996. A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles;

Rydén, M. and Lyngfelt, A., 2006. Using steam reforming to produce hydrogen with carbon dioxide capture by chemical-looping combustion, International Journal of Hydrogen Energy, vol.31, pp. 1271-1283;

Shakya, B. D., Aye, L., Musgrave, P., 2005. Technical feasibility and financial analysis of hybrid wind-photovoltaic system with hydrogen storage for Cooma. International Journal of Hydrogen Energy, vol. 30, pp 9-20.

Sherif, S. A., Barbir, F. , Veziroglu, T. N., 2005. Wind energy and the hydrogen economy-review of the technology, Solar Energy, vol.78, pp. 647-660;

Ströbel, R., Jörissen, L., Schliermann, T., Trapp, V., Schütz, W., Bohmhammel, K., Wolf, G., Garche, J., 1999. Hydrogen adsorption on carbon materials, Journal Power Systems, vol. 84, pp. 221-224;

Swain, M.R., Swain, M.N., 1992. A comparison of H2, CH4, and C3H8 fuel leakage in residential settings. International Journal of Hydrogen Energy, vol. 17, pp. 807–815;

Ulleberg, O., 1998. Stand-alone power systems for the future: optimal design, operation and control of solar-hydrogen energy systems;

Veziroglu, T. N. and Barbir, F., 1998. Hydrogen Energy Technologies;

Yüzügüllü, E., 2005. Hydrogen Production Alternatives: Resolving Disparities and Examining the Stability of Decision Making Amongst Divergent Stakeholders;

Züttel, A., 2004. Hydrogen storage methods;