TIME-OF- USE ELECTRICITY RATE IMPACT IN THE ECONOMIC ANALYSIS ON OF SOLAR DOMESTIC HOT-WATER SYSTEMS
DOI:
https://doi.org/10.59627/cbens.2016.1870Palavras-chave:
solar domestic hot water systems, flat rate, time-of-use rateResumo
Brazilian demand curve for the residential sector has most of the times a typical shape with a pronounced peak from 18-22 hours. A time-of-use rate was recently introduced to incentive consumers to manage their demand in order to avoid electricity consumption during on-peak hours. Solar Domestic Hot-Water Systems can be a useful tool to reduce the energy consumption and on-peak power demand but represents additional investment costs, so depending on the electricity costs, they can be an economically feasible option. The present work shows an optimization procedure to define the sizing of the Solar Domestic Hot Water System for a study case that considers an average hourly electricity consumption for water heating of 60 dwellings. It presents a multi-objective optimization analysis considering the conflicting objectives of the consumers that want a lower monthly expenditure and the utility company that wants to smooth the demand curve. Results shows that considering the actual regulation, solar heating systems are economically feasible for both rates with a slightly advantage to the time-of-use rate. Reduction in the on-peak electricity consumption is always achieved.
Downloads
Referências
Aneel - AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA, 2013. Nota Técnica nº 1/2013-SRC/ANEEL. Brasília, 13 de Fevereiro de 2013 (in Portuguese), Brasília.
Aneel - AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA, 2015. Resolução Homologatória n° 1927 de 4 de agosto de 2015 (in portuguese), Brasília.
Borges, T.P.F., 2000. Síntese otimizada de sistemas de aquecimento solar de água (in Portuguese), PhD Thesis. Unicamp, Campinas.
Borges, T.P.F., Colle, S. and Wendel, M., 2004. Impactos da adoção de tarifas diferenciadas de energia elétrica sobre o projeto otimizado de sistemas de aquecimento solar de água (in Portuguese), in: Vázquez, M., Seara, J.F. (Eds.), XII Congreso Ibérico y VII Congreso Íbero Americano de Energía Solar, pp. 14–18, Vigo, Spain.
Borges, T.P.F., Colle, S. and Wendel, M., 2005. Multiobjective Optimization as a Decision Tool tor Financing or Rebating Domestic Solar Water Heaters, in: Solar World Congress - ISES 2005, pp. 2–6. Orlando, USA.
CEF – Caixa Econômica Federal, 2011. Programa Minha Casa Minha Vida – Termo de Referência Sistemas deAquecimento Solar – SAS (in Portuguese), Brasília.
Duffie, J.A. and Beckman, W.A., 2013. Solar Engineering of Thermal Processes, 4th Edition, ed. Wiley, New Jersey, USA.
EPE – EMPRESA DE PLANEJAMENTO ENERGÉTICO, 2012. Nota Técnica DEA 16/12 Avaliação da Eficiência Energética para os próximos 10 anos (2012-2021) - Série Estudos de Demanda (in Portuguese). Rio de Janeiro.
EPE – EMPRESA DE PLANEJAMENTO ENERGÉTICO, 2014(a). Plano Decenal de Expansão de Energia 2023 (in Portuguese), Brasília.
EPE – EMPRESA DE PLANEJAMENTO ENERGÉTICO, 2014(b). Brazilian Energy Balance 2014 Year 2013, Rio de Janeiro.
Inmetro – Instituto Nacional de Metrologia, 2015. Web page link accessed on November, 2015, http://www.inmetro.gov.br/consumidor/pbe/ColetoresSolares-banho.pdf, 2015.
Klein, S.A., 2010. TRNSYS: A transient systems simulation program, V. 17.
Marler, R.T., Arora, J.S., 2004. Survey of multi-objective optimization methods for engineering. Struct, Multidiscip. Optim. 26, 369–395.
Morrison, G.L., Braun, J.E., 1985. System modelling and operation characteristics of thermosyphon solar water heaters, Solar Energy vol.34, pp. 389–405.
Naspolini, H.F., 2012. Agregação de energia solar térmica ao aquecimento de água para o banho na moradia popular no Brasil (in Portuguese), PhD Thesis. UFSC, Florianópolis.
Salazar, J.P.L.C., 2004. Economia de energia e redução do pico da curva de demanda para consumidores de baixa renda por agregação de energia solar térmica (in Portuguese), Master Dissertation, UFSC, Florianópolis.
Starke, A.R., Ruas, T.D.M., Abreu, S.L., Cardemil, J.M. and Colle, S., 2015. Multi-Objective and Multi-Parameter Optimization of Solar Domestic Hot-Water Systems for Reducing On-Peak Power Consumption, Solar World Congress - 2015, Daegu, South Korea.
SWERA - Solar and Wind Energy Resource Assessment, 2013. Web page link accessed on November, 2015, http://en.openei.org/wiki/SWERA/Data, 2013.
Wetter, M., 2008. GenOpt - Generic Optimization Program - User Manual V 2.1.0.