TECNOLOGIAS DE CÉLULAS FOTOVOLTÁICAS UTILIZADAS EM MÓDULOS COMERCIAIS E SUAS PRINCIPAIS CARACTERÍSTICAS

UMA REVISÃO

Autores

  • Gabriela Nascimento Pereira Sengi Solar
  • Gabriel Ugucioni Rocha Sengi Solar
  • Matheus Bisolotti do Carmo Sengi Solar
  • Igor Utzig Picco Sengi Solar
  • Fernando Andrey Bessegatto Sengi Solar
  • Carlos Victor do Rego Brandao Sengi Solar
  • Murilo Bonetto Sengi Solar

DOI:

https://doi.org/10.59627/cbens.2024.2379

Palavras-chave:

Tecnologias fotovoltaicas, silício cristalino, Módulos comerciais

Resumo

Devido ao crescimento do setor fotovoltaico, as tecnologias de células solares de silício cristalino têm evoluído rapidamente nos últimos anos. A busca por materiais e arranjos mais eficientes e confiáveis gera alterações nas tendências de mercado, trazendo células com melhor desempenho. Neste sentido, este trabalho traz uma revisão acerca das principais tecnologias de silício disponíveis no mercado atual (PERC, TOPCon, SHJ e IBC), discutindo características de construção, passivação e dopagem, assim como os principais efeitos de degradação verificados nestes dispositivos. São observadas as principais diferenças de construção entre cada tipo célula e o impacto dessas diferenças no funcionamento e eficiência da célula. Ainda, nota-se que fatores como temperatura do módulo, tipo de encapsulante, exposição à radiação solar, entre outros, contribuem para a deterioração do módulo. Também é realizada uma abordagem breve a respeito da tendência de mercado para as tecnologias fotovoltaicas, verificando-se a direção para a substituição do domínio de células PERC para células TOPCon, além da discussão do potencial brasileiro em torno do setor solar, indicando que o Brasil tem potencial para se tornar fabricante de células solares de silício, sendo apontado como um dos principais produtores mundiais de silício .

Downloads

Não há dados estatísticos.

Biografia do Autor

Gabriela Nascimento Pereira, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Gabriel Ugucioni Rocha, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Matheus Bisolotti do Carmo, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Igor Utzig Picco, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Fernando Andrey Bessegatto, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Carlos Victor do Rego Brandao, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Murilo Bonetto, Sengi Solar

Departamento de Pesquisa e Desenvolvimento.

Referências

Ahmad, W. et al., 2023. A novel approach to reduce both front and rear side power losses in PERC solar cells using different combinations of transparent metal oxides. Ceramics International.

Blakers, A., 2019. Development of the PERC Solar Cell. IEE Journal of Photovoltaics.

Blakers, A. W., 1989. 22.8% efficient solar cell. Appl. Phys. Lett., pp. 1363 –1365.

Bórawski, P. H., 2023. Perspectives of Photovoltaic Energy Market Development in the European Union. Energy.

Chen, C. et al., 2021. Investigating the viability of PERC solar cells fabricated on Ga -instead of B-doped monocrystalline silicon wafer. Solar Energy Materials and Solar Cells.

Chen, W. et al., 2023. Optimization of activated phosphorus concentration in recrystallized polysilicon layers for the n-topcon solar cell application. Solar Energy Materials and Solar Cells.

Chuchvaga, N. et al., 2023. Development of Hetero-Junction Silicon Solar Cells with Intrinsic Thin Layer: A Review. Coatings 13, 796.

Cui, W. et al., 2023. Status and perspectives of transparent conductive oxide films for silicon heterojunction solar cells. Materials Today Nano.

da Silva, M. K., Gul, M. S. e Chaudhry, H., 2021. Review on the Sources of Power Loss in Monofacial and Bifacial Photovoltaic Technologies. Energies.

Exame. 2023. Brasil atinge 32 GW de capacidade instalada em energia solar fotovoltaica. Fonte: https://exame.com/esg/brasil-atinge-32-gw-de-capacidade-instalada-em-energia-solar-fotovoltaica/. Acessado em: 27 de outubro de 2023.

Fazal, M. e Rubaiee, S., 2023. Progress of pv cell technology: Feasibility of building materials, cost, performance, and stability. Solar Energy.

Feldmann, F. et al.,. 2014. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Solar Energy Materials and Solar Cells.

Ghosh, D. K. et al., 2022. Fundamentals, present status and future perspective of TOPCon solar cells: A comprehensive review. Surfaces and Interfaces.

Guo, C. et al., 2023. Influence of backside surface morphology on passivation and contact characteristics of TOPCON solar cells. Solar Energy.

ITRPV. 2019. International Technology Roadmap for Photovoltaic: 2018 Results. 10 th edition.

ITRPV. 2020. International Technology Roadmap for Photovoltaic: 2019 Results. 11 th edition.

ITRPV. 2023. International Technology Roadmap for Photovoltaic: 2022 Results. 14th edition

Kashyap, S. et al., 2020. Comprehensive Study on the Recent Development of PERC Solar Cell. 47th IEEE Photovoltaic Specialists Conference (PVSC), pp. 2542-2546.

Khokhar, M. et al., 2023. A Review on p-Type Tunnel Oxide Passivated Contact (TOPCon) Solar Cell. Transactions on Electrical and Electronic Materials.

Kim, J. et al., 2022. A Brief Review of Passivation Materials and Process for High Efficiency PERC Solar Cell. Trans. Electr. Electron. Mater. 23.

Kopecek, R. et al., 2023. Interdigitated Back Contact Technology as Final Evolution for Industrial Crystalline Single - Junction Silicon Solar Cell. Solar.

Lammert, M. D. e Schwartz, R. J., 1977. The Interdigitated Back Contact Solar Cell: A Silicon Solar Cell for Use in Concentrated Sunlight. IEEE Transactions on Electron Devices.

Liu, J. et al., 2018. Review of status developments of high-efficiency crystalline silicon solar cells. Journal of Physics D: Applied Physics.

Liu, Y. et al., 2020. High-Efficiency Silicon Heterojunction Solar Cells: Materials, Devices and Applications. Materials Science and Engineering. R, Reports.

Mat Desa, M. K. et al., 2016. Silicon back contact solar cell configuration: A pathway towards higher efficiency. Renewable and Sustainable Energy Reviews.

Meng, L., You, J. e Yang, Y., 2018. Addressing the stability issue of perovskite solar cells for commercial applications. Nat Commun 9.

Panigrahi, J. e Komarala, V. K., 2021. Progress on the intrinsic a-Si:H films for interface passivation of silicon heterojunction solar cells: A review. Journal of Non-Crystalline Solids.

Portal Solar. 2023. Energia Solar no Brasil. Fonte: https://www.portalsolar.com.br/energia-solar-no-brasil.html. Acessado em: 27 de outubro de 2023.

Sadhukhan, S. et al., 2021. Evaluation of dominant loss mechanisms of PERC cells for optimization of rear passivating stacks. Surfaces and Interfaces.

Santos, B. (2022). Rumo a uma fabricação solar 100% brasileira. Fonte: PV Magazine Latino América: https://www.pv-magazine-latam.com/brasil-noticias/a-caminho-rumo-a-uma-fabricacao-solar-100-brasileira/. Acessado em: 27 de outubro de 2023.

Shockley, W. e Queisser, H., 2004. Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. Journal of Applied Physics.

Singh, A. U., 2023. Comparative study of commercial crystalline solar cells. Results in Optics.

Sociedade de Investigações Florestais. (2020). Ligas metálicas – Silício Metálico. Fonte: https://sif.org.br/2020/07/ligas-metalicas-silicio-metalico/. Acessado em: 27 de outubro de 2023.

Sommeling, P. M., Liu, J. e Kroon, J. M., 2023. Corrosion effects in bifacial crystalline silicon pv modules; interactions between metallization and encapsulation. Solar Energy Materials and Solar Cells.

Swanson, R. M. et al., 1984. Point-Contact Silicon Solar Cells. IEEE Transactions on Electron Devices.

Taguchi, M., 2021. Review - Development History of High Efficiency Silicon Heterojunction Solar Cell: From Discovery to Practical Use. ECS Journal of Solid State Science and Technology.

Tanaka, M. et al., 1992. Development of New a-Si/c-Si Heterojunction Solar Cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer). Japanese Journal of Applied Physics.

Tomihisa, T., Shirasawa, K. e Takato, H. (2020). Investigation of electrical shading loss of bifacial interdigitated -back-contact (IBC) crystalline silicon solar cells with screen-printed electrode. Japanese Journal of Applied Physics.

Tong, R. et al., 2021. Tuning back side passivation for enhancing the performance of PERC solar cells. Solar Energy Materials and Solar Cells.

U.S. Geological Survey. 2023. Mineral Commodity Summaries 2023: U.S. Geological Survey, p.158 -159.

Ullah, H. et al., 2023. Crystalline Silicon (c-Si)-Based Tunnel Oxide Passivated Contact (TOPCon) Solar Cells: A Review. Energies .

Wang, J. et al., 2022. One-step preparation of TiO2 anti-reflection coating and cover layer by liquid phase deposition for monocrystalline Si PERC solar cell. Solar Energy Materials and Solar Cells.

Yang, Z., 2020. Back-contact structures for optoelectronic devices: Applications and perspectives. Nano Energy, p. 105362.

Yousuf, H. K., 2021. A Review on TOPCon Solar Cell Technology. Current Photovoltaic Research, 9(3), 75 –83.

Yu, Y. L., 2023. Influence of the structural differences between end -of-life Al-BSF and PERC modules on the Al leaching separation behavior. Solar Energy.

Zaparolli, D., 2022. Produção de painéis não é competitiva no Brasil e Ásia atende 95% do mercado. Fonte: Valor Econômico: https://valor.globo.com/publicacoes/suplementos/noticia/2022/05/30/producao -de-paineis-nao-e-competitiva-no-brasil-e-asia-atende-95-do-mercado.ghtml. Acessado em: 27 de outubro de 2023.

Downloads

Publicado

2024-09-20

Como Citar

Pereira, G. N., Rocha, G. U., Carmo, M. B. do, Picco, I. U., Bessegatto, F. A., Brandao, C. V. do R., & Bonetto, M. (2024). TECNOLOGIAS DE CÉLULAS FOTOVOLTÁICAS UTILIZADAS EM MÓDULOS COMERCIAIS E SUAS PRINCIPAIS CARACTERÍSTICAS: UMA REVISÃO. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2379

Edição

Seção

Anais