IDENTIFICAÇÃO E CLASSIFICAÇÃO DE MICROTRINCAS EM MÓDULOS FOTOVOLTAICOS ATRAVÉS DE TESTE DE ELETROLUMINESCÊNCIA
DOI:
https://doi.org/10.59627/cbens.2024.2380Palavras-chave:
Energia Solar, Teste de Eletroluminescência, MicrotrincasResumo
Tendo em vista o contínuo crescimento de sistemas fotovoltaicos no Brasil e a necessidade de testes de inspeção nos módulos fotovoltaicos, esse trabalho apresenta informações de suporte à interpretação e análise de resultados de testes de eletroluminescência. Através de uma revisão bibliográfica é detalhado o processo de teste de eletroluminescência e os trabalhos já realizados para interpretação de defeitos. São apresentados exemplos de diferentes defeitos que módulos construídos na topologia de meia célula podem apresentar e, por fim, a classificação desses defeitos de acordo com sua severidade na performance do módulo fotovoltaico.
Downloads
Referências
Bdour, M. et al. 2020. A comprehensive evaluation on types of microcracks and possible effects on power degradation in photovoltaic solar panels. Sustainability, 12(16), 6416.
Bdour, M., Al-Sadi, A. 2020. Analysis of different microcracks shapes and the effect of each shape on performance of PV modules. IOP Conference Series: Materials Science and Engineering (Vol. 876, No. 1, p. 012005).
Bedrich, K. G. et al. 2018. Quantitative electroluminescence imaging analysis for performance estimation of PID-influenced PV modules. IEEE Journal of Photovoltaics, 8(5), 1281-1288.
Bressan, M., et al. 2018. Development of a real-time hot-spot prevention using an emulator of partially shaded PV systems. Renewable energy, 127, 334-343.
Buerhop, C. et al. 2018. Evolution of cell cracks in PV‐modules under field and laboratory conditions. Progress in Photovoltaics: Research and Applications, 26(4), 261 -272.
De Brito, E. S. M.; Teixeira, T.; De Souza, F. P. 2023. As potencialidades e os limites da energia solar fotovoltaica no Brasil. CONTRIBUCIONES A LAS CIENCIAS SOCIALES, v. 16, n. 9, p. 15663-15680.
Dhimish, M. 2020. Micro cracks distribution and power degradation of polycrystalline solar cells wafer: Observations constructed from the analysis of 4000 samples. Renewable Energy, 145, 466 -477.
Dhimish, M. et al. 2017. The impact of cracks on photovoltaic power performance. Journal of Science: Advanced Materials and Devices, 2(2), 199-209.
Dhimish, M., Holmes, V. 2019. Solar cells micro crack detection technique using state-of-the-art electroluminescence imaging. Journal of Science: Advanced Materials and Devices, 4(4), 499 -508.
Dolara, A. et al. 2016. Snail trails and cell microcrack impact on PV module maximum power and energy production. IEEE Journal of Photovoltaics, 6(5), 1269-1277.
Dolara, A. et al. 2018. Impact of cell microcracks size and spatial distribution on output power of PV modules. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (pp. 1-6). IEEE.
Dubey, R. et al. 2018. On-site electroluminescence study of field-aged PV modules. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)
Goudelis, G., Lazaridis, P. I., Dhimish, M. 2022. A review of models for photovoltaic crack and hotspot prediction. Energies, 15(12), 4303.
Grunow, P. et al. 2005. Influence of micro cracks in multi-crystalline silicon solar cells on the reliability of PV modules. Proceedings of the 20th EUPVSEC, 2042-2047.
Hermann, W. et al. 2021. Qualification of PV Power Plants using Mobile Test Equipment. In Task 13 Reports (pp. 73-84).
ITRPV. International Technology Roadmap for Photovoltaic (ITRPV): 2022 Results. 2023.
Jahn, U., et al. 2018. Review on infrared and electroluminescence imaging for PV field applications. Report IEA-PVPS T13-10:2018
Kajari-Schršder, S., Kunze, I., Kšntges, M. 2012. Criticality of cracks in PV modules. Energy Procedia, 27, 658 -663.
Karimi, A. M. et al. 2020. Generalized and mechanistic PV module performance prediction from computer vision and machine learning on electroluminescence images. IEEE Journal of Photovoltaics, 10(3), 878 -887.
Koch, S, et al. 2010. Dynamic mechanical load tests on crystalline silicon modules. In 25th European Photovoltaic Solar Energy Conference–Valencia.
Köntges, M. et al. 2011. The risk of power loss in crystalline silicon based photovoltaic modules due to micro -cracks. Solar energy materials and solar cells, 95(4), 1131-1137.
Köntges, M., et al. 2017. Assessment of Photovoltaic Module Failures in the Field: International Energy Agency Photovoltaic Power Systems Programme: IEA PVPS Task 13, Subtask 3: Report IEA-PVPS T13-09: 2017.
International Energy Agency.Papargyri, L. et al. 2020. Modelling and experimental investigations of microcracks in crystalline silicon photovoltaics: A review. Renewable Energy, 145, 2387-2408.
Peshek, T. J., Fada, J. S., Martin, I. T. 2019. Degradation processes in photovoltaic cells. In Durability and Reliability of Polymers and Other Materials in Photovoltaic Modules (pp. 97 -118). William Andrew Publishing.
Sander, M., Dietrich, S. 2013. Influence of manufacturing processes and subsequent weathering on cell cracks in PV modules. 28th EU PVSEC.
Vargas, P. P. 2023 Energia Solar Fotovoltaica: Análise de sua expansão no Brasil. Monografia de graduação, UFSC, Florianópolis