ASSESSING WIND ACCURACY IN A COUPLET ATMOSPHERE-WAVE SYSTEM FOR THE NORTHEAST COAST OF BRAZIL

Autores

  • Nícolas de Assis Bose Instituto SENAI de Inovação em Energias Renováveis. Institute of Geosciences, Federal University of Rio Grande do Sul.
  • Jean Souza dos Reis Instituto SENAI de Inovação em Energias Renovávei
  • Vanessa de Almeidas Dantas Instituto SENAI de Inovação em Energias Renovávei
  • Ana Cleide Bezerra Amorim Instituto SENAI de Inovação em Energias Renovávei
  • Maria de Fátima Alves de Matos Instituto SENAI de Inovação em Energias Renovávei
  • Samira de Azevedo Santos Emiliavaca Instituto SENAI de Inovação em Energias Renovávei
  • Leonardo de Lima Oliveira Instituto SENAI de Inovação em Energias Renovávei
  • Luciano Andre Cruz Bezerra Instituto SENAI de Inovação em Energias Renovávei
  • Leandro Farina Federal University of Rio Grande do Sul

DOI:

https://doi.org/10.59627/cbens.2024.2521

Palavras-chave:

Atmosphere-wave Interaction, Numerical Model, Wave-induce Wind

Resumo

This paper investigates the sensitivity of offshore wind simulations, focusing on the northeast coast of Brazil. The study utilizes the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST), integrating the Weather Research and Forecasting (WRF) and Simulating Waves Nearshore (SWAN) models. The research emphasizes the impact of wind-wave interaction on wind speed, considering factors such as atmospheric and ocean surface conditions. The methodology includes site selection, model overview, and validation techniques. Results indicate that the coupled atmosphere-wave model outperforms the stand-alone atmospheric model, showcasing enhanced accuracy in predicting wind speed. The paper discusses the significance of considering wave effects in offshore wind modeling and provides insights into the interplay between wind and waves, emphasizing the need for precise simulations in wind energy assessments.

Downloads

Não há dados estatísticos.

Biografia do Autor

Leandro Farina, Federal University of Rio Grande do Sul

Institute of Geosciences.

Referências

AlSam, A., Szasz, R. & Revstedt, J. (2015), ‘The influence of sea waves on offshore wind turbine aerodynamics’, Journal of Energy Resources Technology 137(5).

Booij, N., Holthuijsen, L. & Ris, R. (1996), The” swan” wave model for shallow water, in ‘Coastal Engineering 1996’, pp. 668– 676.

Charnock, H. (1955), ‘Wind stress on a water surface’, Quarterly Journal of the Royal Meteorological Society 81(350), 639–640. do Brasil, M. (2017), ‘Programa nacional de boias—pnboia-plano nacional de trabalho’, Marinha do Brasil: Brasilia, Brazil .

Drennan, W. M., Graber, H. C., Hauser, D. & Quentin, C. (2003), ‘On the wave age dependence of wind stress over pure wind seas’, Journal of Geophysical Research: Oceans 108(C3).

Fischereit, J. & Larsén, X. G. (2019), Interactions of oceanic surface waves and offshore wind farm wakes, in ‘Annual meeting 2019: European Conference for Applied Meteorology and Climatology’.

GOV-RN, G. o. R. G. d. N. S. & ISI-ER, S. I. I. f. R. E. (2022), ‘Wind and solar atlas of rio grande do norte state’, Atlas 1(1), 211. Grachev, A., Fairall, C., Hare, J., Edson, J. & Miller, S. (2003), ‘Wind stress vector over ocean waves’, Journal of Physical Oceanography 33(11), 2408–2429.

Hahmann, A. N., Vincent, C. L., Peña, A., Lange, J. & Hasager, C. B. (2015), ‘Wind climate estimation using wrf model output: method and model sensitivities over the sea’, International Journal of Climatology 35(12), 3422–3439.

Kalverla, P., Holtslag, A., Ronda, R. & Steeneveld, G. (2020), ‘Quality of wind characteristics in recent wind atlases over the north sea, qj roy. meteor. soc., 146, 1498–1515’.

Kalvig, S., Manger, E., Hjertager, B. H. & Jakobsen, J. B. (2014), ‘Wave influenced wind and the effect on offshore wind turbine performance’, Energy Procedia 53, 202–213.

Lange, B., Larsen, S., Højstrup, J. & Barthelmie, R. (2004), ‘Importance of thermal effects and sea surface roughness for offshore wind resource assessment’, Journal of wind engineering and industrial aerodynamics 92(11), 959–988.

Li, H., Claremar, B., Wu, L., Hallgren, C., Körnich, H., Ivanell, S. & Sahlée, E. (2021), ‘A sensitivity study of the wrf model in offshore wind modeling over the baltic sea’, Geoscience Frontiers 12(6), 101229.

Mortensen, N. G., Landberg, L., Troen, I. & Lundtang Petersen, E. (1993), ‘Wind atlas analysis and application program (wasp)’.

Porchetta, S., Muñoz-Esparza, D., Munters, W., van Beeck, J. & van Lipzig, N. (2021), ‘Impact of ocean waves on offshore wind farm power production’, Renewable Energy 180, 1179–1193.

Reis, M. M. L., Mazetto, B. M. & Silva, E. C. M. (2021), ‘Economic analysis for implantation of an offshore wind farm in the brazilian coast’, Sustainable Energy Technologies and Assessments 43, 100955.

Ris, R., Holthuijsen, L. & Booij, N. (1999), ‘A third-generation wave model for coastal regions: 2. verification’, Journal of Geophysical Research: Oceans 104(C4), 7667–7681.

Salvação, N. & Soares, C. G. (2018), ‘Wind resource assessment offshore the atlantic iberian coast with the wrf model’, Energy 145, 276–287.

Semedo, A., Saetra, Ø., Rutgersson, A., Kahma, K. K. & Pettersson, H. (2009), ‘Wave-induced wind in the marine boundary layer’, Journal of the Atmospheric Sciences 66(8), 2256–2271.

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M. et al. (2019), ‘A description of the advanced research wrf version 4’, NCAR tech. note ncar/tn-556+ str 145.

Smith, S. D., Anderson, R. J., Oost, W. A., Kraan, C., Maat, N., De Cosmo, J., Katsaros, K. B., Davidson, K. L., Bumke, K., Hasse, L. et al. (1992), ‘Sea surface wind stress and drag coefficients: The hexos results’, Boundary-layer meteorology 60, 109–142.

Souza, N. B. P., Nascimento, E. G. S., Santos, A. A. B. & Moreira, D. M. (2022), ‘Wind mapping using the mesoscale wrf model in a tropical region of brazil’, Energy 240, 122491.

Svensson, N., Arnqvist, J., Bergström, H., Rutgersson, A. & Sahlée, E. (2019), ‘Measurements and modelling of offshore wind profiles in a semi-enclosed sea’, Atmosphere 10(4), 194.

Svensson, N., Bergström, H., Rutgersson, A. & Sahlée, E. (2019), ‘Modification of the baltic sea wind field by land-sea inter- action’, Wind Energy 22(6), 764–779.

Warner, J. C., Armstrong, B., He, R. & Zambon, J. B. (2010), ‘Development of a coupled ocean–atmosphere–wave–sediment transport (coawst) modeling system’, Ocean modelling 35(3), 230–244.

Wu, J. (1980), ‘Wind-stress coefficients over sea surface near neutral conditions—a revisit’, Journal of Physical Oceanography 10(5), 727–740.

Wu, L., Shao, M. & Sahlée, E. (2020), ‘Impact of air–wave–sea coupling on the simulation of offshore wind and wave energy potentials’, Atmosphere 11(4), 327.

Downloads

Publicado

2024-09-20

Como Citar

Bose, N. de A., Reis, J. S. dos, Dantas, V. de A., Amorim, A. C. B., Matos, M. de F. A. de, Emiliavaca, S. de A. S., Oliveira, L. de L., Bezerra, L. A. C., & Farina, L. (2024). ASSESSING WIND ACCURACY IN A COUPLET ATMOSPHERE-WAVE SYSTEM FOR THE NORTHEAST COAST OF BRAZIL. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2521

Edição

Seção

Anais