INFLUENCE OF THE EMITTER PRODUCED WITH REDUCTION OF THERMAL STEPS IN THE ELECTRICAL PARAMETERS OF N-TYPE BIFACIAL SOLAR CELLS
DOI:
https://doi.org/10.59627/cbens.2022.1075Keywords:
Células solares bifaciais, Estrutura PERT base n, Redução de etapas térmicasAbstract
Bifacial solar cells produced in n-type silicon wafers have the potential to obtain high efficiency and bifaciality near to one. With this goal, the objective of this article is to analyze the influence of the method to produce the emitter and the back surface field in the same thermal step in the electrical parameters of n-type bifacial solar cells with PERT structure and silicon dioxide surface passivation. The spin-on technique was used and the boron diffusion was carried out in a conventional tube furnace, followed by the diffusion of phosphorus with POCl3. The temperature of boron diffusion was ranged from 940 °C to 980 °C and the sheet resistance of the emitter and the back surface field (BSF) doped with phosphorus were analyzed as well as its influence on the electrical parameters of the bifacial solar cells. The sheet resistance of the boron emitter decreased from (116 ± 6) Ω/sq to (64 ± 2) Ω/sq with increasing of the boron diffusion temperature from 940 °C to 980 °C. However, the sheet resistance of the phosphorus back surface field increased, indicating that boron diffusion affected the phosphorus-doped region. The efficiencies of 15.3% and 15.5%, with irradiance in the emitter and in the back surface field, respectively, was achieved with the boron diffusion temperature of 960 °C. In this solar cell the bifaciality was 0.987. We found that the open circuit voltage was higher with irradiance in the BSF, regardless of the processing temperature. Moreover, in both illumination modes, the open circuit voltage and fill factor grew up until the processing temperature of 960 °C. However, the short-circuit current density with irradiance in the emitter decreases slightly with the increasing of the boron diffusion temperature, due to the high recombination of the minority charge carriers. The fill factor was the electrical parameter that most affected the efficiency.
Downloads
References
Biazetto, F. A., 2019. Otimização das regiões altamente dopadas de células solares bifaciais base n e análise da passivação, Dissertação de Mestrado, PGETEMA, PUCRS, Porto Alegre.
Bonilla, R. S., Hoex, B., Hamer, P., & Wilshaw, P. R., 2017. Dielectric surface passivation for silicon solar cells: A review, physica status solidi(a), vol. 214, n. 7, e-1700293, pp. 1-30. DOI 10.1002/pssa.201700293
Boukortt, N., & Hadri, B. (2019). Bifacial n-PERC solar cell characterization, Indian Journal of Physics, vol. 93, n. 1, pp. 33-39. DOI:10.1007/s12648-018-1274-5
Chen, D., Chen, Y., Wang, Z., Gong, J., Liu, C., Zou, Y., ... & Verlinden, P. J., 2020. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design,
Solar Energy Materials and Solar Cells, vol. 206, e-110258, pp. 1-8. https://doi.org/10.1016/j.solmat.2019.110258
Crestani, T., 2021. Desenvolvimento de células solares bifaciais pert base p com junção flutuante e análise da passivação, Tese de Deoutorado, PGETEMA, PUCRS, Porto alegre.
Ding, D., Lu, G., Li, Z., Zhang, Y., & Shen, W., 2019. High-efficiency n-type silicon PERT bifacial solar cells with selective emitters and poly-Si based passivating contacts, Solar Energy, vol. 193, pp. 494-501.
https://doi.org/10.1016/j.solener.2019.09.085
Fernandez-Robledo, S., Nekarda, J., & Büchler, A., 2017. A laser induced forward transfer process for selective boron emitters, Solar Energy Materials and Solar Cells, vol. 161, pp. 397-406. DOI 10.1016/j.solmat.2016.12.026
Glunz, S. W., & Feldmann, F., 2018. SiO2 surface passivation layers–a key technology for silicon solar cells, Solar Energy Materials and Solar Cells, vol. 185, pp. 260-269. https://doi.org/10.1016/j.solmat.2018.04.029
Green, M. A., 1982. Solar cells: operating principles, technology and system applications. Englewood Cliffs, N.J.: Prentice-Hall.
Green, M. A., 2009. The path to 25 % silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, v. 17, pp. 183 – 189. https://doi.org/10.1002/pip.892
Green, M. A., 2015 The passivated emitter and rear cell (PERC): from conception to mass production, Solar Energy Materials & Solar Cells, vol. 143, pp. 190–197. https://doi.org/10.1016/j.solmat.2015.06.055
Green, M. A., Dunlop, E. D., Hohl_Ebinger, J., Yoshita, M., Kopidakis, N., & Hao, X., 2021. Solar cell efficiency tables (Version 58), Progress in Photovoltaics: Research and Applications, vol. 29, n 7, pp. 657-667. https://doi.org/10.1002/pip.3444
Ho, J., Wu, T. C., Ho, J. J., Hung, C. H., Chen, S. Y., Ho, J. S., ... & Yeh, C. H., 2018. Rear-surface line-contact optimization using screen-print techniques on crystalline solar cells for industrial applications, Materials Science in Semiconductor Processing, vol. 83, pp. 22-26. https://doi.org/10.1016/j.mssp.2018.03.037
Huang, H., Modanese, C., Sun, S., von Gastrow, G., Wang, J., Pasanen, T. P., ... & Savin, H., 2018. Effective passivation of p+ and n+ emitters using SiO2/Al2O3/SiNx stacks: Surface passivation mechanisms and application to industrial p-PERT bifacial Si solar cells, Solar Energy Materials and Solar Cells, vol. 186, pp. 356-364.
https://doi.org/10.1016/j.solmat.2018.07.007
Huang, Y., Liao, M., Wang, Z., Guo, X., Jiang, C., Yang, Q., ... & Ye, J., 2020. Ultrathin silicon oxide prepared by inline plasma-assisted N2O oxidation (PANO) and the application for n-type polysilicon passivated contact, Solar Energy Materials and Solar Cells, vol. 208, e-110389, pp. 1-8. https://doi.org/10.1016/j.solmat.2019.110389 ITRPV. International Technology Roadmap for Photovoltaic (ITRPV): Results 2020. 2021, 12. ed. Germany: VDMA, 88 p. Disponível em: https://itrpv.vdma.org/en/.
Jiang, Y., Zhang, X., Wang, F., & Zhao, Y., 2015. Optimization of a silicon wafer texturing process by modifying the texturing temperature for heterojunction solar cell applications, RSC Advances, vol. 5, n. 85, pp. 69629-69635. DOI: 10.1039/C5RA09739H
Kern, W., 1993. Handbook of semiconductor wafer cleaning technology: science, technology, and applications. New Jersey, USA: Noyes Publications.
Lanterne, A., Desrues, T., Lorfeuvre, C., Coig, M., Torregrosa, F., Milési, F., ... & Dubois, S., 2019. Plasma_immersion ion implantation: A path to lower the annealing temperature of implanted boron emitters and simplify PERT solar cell processing, Progress in Photovoltaics: Research and Applications, vol. 27, n. 12, pp. 1081-1091. https://doi.org/10.1002/pip.3186
Sugiura, T., Matsumoto, S., & Nakano, N., 2020. Bifacial PERC solar cell designs: Bulk and rear properties and illumination condition, IEEE Journal of Photovoltaics, vol. 10, n. 6, pp. 1538-1544. DOI:
1109/JPHOTOV.2020.3013987
Xia, L. et al. Influence of laser cutting conditions on electrical characteristics of half-size bifacial silicon solar cells. Materials Science in Semiconductor Processing, v. 105, n. June 2019, p. 104747, 2020. DOI:
1016/j.mssp.2019.104747
Yan, X., Wang, E. C., Chen, N., Zhang, L., Gong, X., Zhang, X., & Duttagupta, S., 2019. Investigation of phosphorus diffused back surface field (BSF) in bifacial nFAB solar cells, Solar Energy, vol. 179, pp. 335-342.
https://doi.org/10.1016/j.solener.2018.12.052
Yin, H. P., Tang, K., Zhang, J. B., Shan, W., Huang, X. M., & Shen, X. D., 2020. Bifacial n-type silicon solar cells with selective front surface field and rear emitter, Solar Energy Materials and Solar Cells, vol. 208, e-110345, pp 1-7. https://doi.org/10.1016/j.solmat.2019.110345
Yin, H. P., Tang, W. S., Zhang, J. B., Shan, W., Huang, X. M., & Shen, X. D., 2021. Screen-printed n-type Si solar cells
with laser-doped selective back surface field, Solar Energy, vol. 220, pp. 211-216. https://doi.org/10.1016/j.solener.2021.03.062
Zanesco, I., Moehlecke, A., 2015a. Analysis of the silicon dioxide passivation and forming gas annealing in silicon solar cells - ISES Solar World Congress, Brasil.
Zanesco, I., Moehlecke, A., 2015b. Células Solares de Alta Eficiência com Emissores Seletivos. Relatório Final de Projeto de P&D, Convênio CEEE-D nº 9942400, 210 p.
Zanesco, I.; Moehlecke, A., 2016. Desenvolvimento de Processos Industriais para Fabricação de Células Solares com Pasta de Al e Passivação. Relatório Final de Projeto de P&D, Convênio ELETROSUL n° 1110140010, 379 p.
Zanesco, I., Crestani, T., Moehlecke, A., Aquino, J., Razera, R. A. Z., Ly, M., & Gonçalves, V. A., 2018.
Desenvolvimento da célula solar com maior eficiência no Brasil com processo Industrial, Revista Brasileira de Energia Solar, vol. 9, n. 1, pp. 41-48.
Zanesco, I., Razera, R. A. Z., & Moehlecke, A., 2018. Análise da passivação com SiO2 na face posterior e frontal de células solares com campo retrodifusor seletivo, Matéria (Rio de Janeiro), vol. 22, e-11924, pp 1-9. https://doi.org/10.1590/S1517-707620170005.0260.
Zanesco, I., Moehlecke, A., Model, J. C. M., Ly, M., de Aquino, J., Razera, R. A. Z., ... & Gonçalves, V. A., 2019. Evaluation of the TiO2 anti-reflective coating in PERT solar cells with silicon dioxide passivation – ISES Solar World Congress, Brasil.
Zhao, J., & Green, M. A., 1991. Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Transactions on electron devices, vol. 38, n. 8, pp. 1925-1934. DOI: 10.1109/16.119035