REVIEW STUDY ON THE TECHNIQUES APPLIED IN THE MODELING OF SOILING ON PHOTOVOLTAIC MODULES

Authors

  • Letícia Recco Tramontin Universidade Federal de Santa Catarina
  • Giuliano Arns Rampinelli Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.59627/cbens.2022.1096

Keywords:

Solar Energy, Photovoltaic Module, Soiling

Abstract

Soiling on photovoltaic modules is a relevant cause for losses in energy generation, in Belo Horizonte/MG it is estimated a reduction of around 11% in six months of measurement. This article presents a review of the models used in the literature to estimate the losses caused by dirt deposited on the surface of the modules. The research protocol defined the keywords to search for articles published from 2011 onwards in six databases, whose results went through three stages of selection: exclusion of articles with titles not relevant to the research, exclusion of abstract articles not relevant to the research, full reading of the articles and selection of the most relevant to the research. The studies developed were grouped according to the type of model. Statistical models use linear regression and similar methods, are practical and simple. Models based on neural networks can return very accurate results (above 90%), but they are complex and need a lot of data to train them. There are also models based on linear, exponential, derating factor, numerical simulation, optical and ratio-dependent equations, which were less explored by the articles. In general, the models use empirical data to obtain the results, which restricts them to the researched location and prevents their generalization to other regions. Sensitivity analyses indicate that physical characteristics of the dirt (composition, size and others) might be more relevant than the environmental parameters, while among these variables precipitation and wind are the most significant parameters. This shows how challenging it is to develop a mathematical model that includes all impact variables. There is a wide variety of studies and approaches, while comparing them without a standardized methodology for the analyses.

Downloads

Author Biography

Letícia Recco Tramontin, Universidade Federal de Santa Catarina

Universidade Federal de Santa Catarina, Programa de Pós-Graduação em Energia e Sustentabilidade

References

Braga, D. S., Costa, S. C. S., Diniz, A. S. A. C., Camatta, V., Kazmerski, L. L., 2020. Estudo da Relação Entre Parâmetros Ambientais e Taxa de Sujidade em Módulos Fotovoltaicos, VIII CBENS – VIII Congresso Brasileiro de Energia Solar, Fortaleza.

Cheema, A., Shaaban, M. F., Ismail, M. H., 2021. A Novel Stochastic Dynamic Modeling For Photovoltaic Systems Considering Dust And Cleaning, Applied Energy, vol. 300.

Chiteka, K., Arora, R., Sridhara, S. N., 2020, A Method To Predict Solar Photovoltaic Soiling Using Artificial Neural Networks And Multiple Linear Regression Models, Energy Systems, vol. 11, pp. 981-1002.

Chiteka, K., Arora, R., Sridhara, S. N., Enweremadu, C. C., 2021, Influence Of Irradiance Incidence Angle And Installation Configuration On The Deposition Of Dust And Dust-Shading Of A Photovoltaic Array. Energy Systems, vol. 216.

Coello, M., Boyle, L., 2019, Simple Model For Predicting Time Series Soiling Of Photovoltaic Panels. IEEE Journal Of Photovoltaics, vol. 9, n. 5, pp. 1382-1387.

Costa, S. C. S., Diniz, A. S. A. C., Santana, V. A. C., Muller, M., Micheli, L. Kazmerski, L. L., 2018. Avaliação da Sujidade em Módulos Fotovoltaicos em Minas Gerais, Brasil, VII CBENS - VII Congresso Brasileiro de Energia Solar, Gramado.

Deceglie, M. G., Micheli, L., Muller, M., 2018, Quantifying Soiling Loss Directly From PV Yield, IEEE Journal Of Photovoltaics, vol. 8, n. 2, pp. 547-551.

Duarte, T. P., Costa, S. C. S., Diniz, A. S. A. C., Kazmerski, L. L., 2020, Estimativa da Taxa de Sujidade em Módulos Fotovoltaicos Utilizando Dados de Densidade Gravimétrica, VIII CBENS – VIII Congresso Brasileiro de Energia Solar, Fortaleza.

Hickel, B. M., 2017, O Impacto no Desempenho de Sistemas Fotovoltaicos Causado Pelo Acúmulo de Sujeira Sobre os Módulos FV – Metodologia e Avaliação Através de Curvas IxV em Campo, Dissertação, PPGEC, UFSC, Florianópolis.

Ilse, K. K., Figgis, B. W., Naumann, V., Hagendorf, C., Bagdahn, J., 2018, Fundamentals Of Soiling Processes On Photovoltaic Modules, Renewable and Sustainable Energy Reviews, vol. 98, pp. 239-254.

Jamil, W. J., Rahman, H. A., Shaari, S., Desa, M. K. M., 2020, Modeling Of Soiling Derating Factor In Determining Photovoltaic Outputs, IEEE Journal Of Photovoltaics, vol. 10, n. 5, pp. 1417-1423.

Javed, W., Guo, B., Figgis, B., Aissa, B., 2021, Dust Potency In The Context Of Solar Photovoltaic (Pv) Soiling Loss, Solar Energy, vol. 2020, pp. 1040-1052.

Laarabi, B., Tzuc, O. M., Dahlioui, D., Bassam, A., Flota-Bañuelos, M., Barhdadi, A., 2017, a, Artificial Neural Network Modeling And Sensitivity Analysis For Soiling Effects On Photovoltaic Panels In Morocco, Superlattices and Microstructures, pp. 1-12.

Laarabi, B., Tzuc, O. M., Dahlioui, D., Bassam, A., Flota-Bañuelos, M., Daoudi, F., Safsafi, F., Barhdadi, A, 2017, b, New Correlation Of Pv Modules Soiling And Outdoor Conditions Using Artificial Neural Networks, 5th IRSEC - 5th International Renewable and Sustainable Energy Conference.

Lemos, L. O., 2016, Estudo Do Efeito Do Acúmulo De Sujidade Na Eficiência De Módulos Fotovoltaicos, Dissertação, Programa de Pós-Graduação em Engenharia de Materiais, CEFET/MG, Belo Horizonte.

Micheli, L., Deceglie, M. G., Muller, M., 2019, Mapping Photovoltaic Soiling Using Spatial Interpolation Techniques, IEEE Journal Of Photovoltaics, vol. 9, n. 1, pp. 272-277.

Micheli, L., Theristis, M., Livera, A., Stein, J. S., Georghiou, G. E., Muller, M., Almonacid, F., Fernández, E. F., 2021, Improved PV Soiling Extraction Through The Detection Of Cleanings And Change Points. IEEE Journal Of Photovoltaics, vol. 11, n. 2, pp. 519-526.

Pavan, A. M., Mellit, A. Pieri, D. D., 2011. The Effect Of Soiling On Energy Production For Large-Scale Photovoltaic Plants, Solar Energy, vol. 85, pp. 1128-1136.

Pavan, A. M., Mellit, A. Pieri, D. D., Kalogirou, S. A., 2013, A Comparison Between BNN And Regression Polynomial Methods For The Evaluation Of The Effect Of Soiling In Large Scale Photovoltaic Plants, Applied Energy, vol. 108, pp. 392-401.

Pelland, S., Pawar, P., Veeramani, A., Gustafson, W., Leahy, L., Etringer, A., 2018, Testing Global Models Of Photovoltaic Soiling Ratios Against Field Test Data Worldwide, 7th WCPEC - IEEE 7th World Conference on Photovoltaic Energy Conversion, pp. 3442-3446.

Pulipaka, S., Mani, F., Kumar, R., 2016, Modeling Of Soiled PV Module With Neural Networks And Regression Using Particle Size Composition, Solar Energy, vol. 123, pp. 116-126.

Pulipaka, S., Kumar, R., 2016, Power Prediction Of Soiled PV Module With Neural Networks Using Hybrid Data Clustering And Division Techniques, Solar Energy, vol. 133, pp. 485-500.

Shapsough, S., Dhaouadi, R., Zualkernan, I., 2019, Using Linear Regression And Back Propagation Neural Networks To Predict Performance Of Soiled PV Modules, Procedia Computer Science, vol. 155, pp. 463-470.

Skomedal, A., Deceglie, M. G., 2020, Combined Estimation Of Degradation And Soiling Losses In Photovoltaic Systems, IEEE Journal Of Photovoltaics, vol. 10, n. 6, pp. 1788-1796.

Souza, G. G., 2020, Infraestrutura Computacional Para Detecção e Análise de Particulados em Plantas Solares Fotovoltaicas, Dissertação, Mestrado Acadêmico em Ciência da Computação, UFMS, Campo Grande.

Varga, H. F., Wiesner, M. R., 2021, Effect Of Dust Composition On The Reversibility Of Photovoltaic Panel Soiling, Environ. Sci. Technol, vol. 55, pp. 1984-1991.

Yang, M., Ji, J., Guo, B., 2020, An Image-Based Method For Soiling Quantification, ICIoT - IEEE International Conference on Informatics, IoT, and Enabling Technologies, pp. 89-94.

Younis, A., Alhorr, Y., 2021, Modeling Of Dust Soiling Effects On Solar Photovoltaic Performance: A Review, Solar Energy, vol. 2020, pp. 1074-1088.

Zhang, W., Liu, S., Gandhi, O., Rodríguez-Gallegos, C. D., Quan, H., Srinivasan, D., 2021, Deep-Learning-Based Probabilistic Estimation Of Solar Pv Soiling Loss, IEEE Transactions On Sustainable Energy, vol. 12, n. 4, pp. 2346-2444.

Published

2022-08-16

How to Cite

Tramontin, L. R., & Rampinelli, G. A. (2022). REVIEW STUDY ON THE TECHNIQUES APPLIED IN THE MODELING OF SOILING ON PHOTOVOLTAIC MODULES. Anais Congresso Brasileiro De Energia Solar - CBENS, 1–10. https://doi.org/10.59627/cbens.2022.1096

Issue

Section

Anais