FORMAT INSTRUCTIONS FOR PAPERS SUBMITTED TO THE CONGRESS

Authors

  • Luis Gustavo Bet Universidade Federal de São Paulo
  • Nilton Manuel Évora do Rosario Universidade Federal de São Paulo
  • Fernando Ramos Martins Universidade Federal de São Paulo
  • Roberto Zilles Universidade de São Paulo

DOI:

https://doi.org/10.59627/cbens.2022.1108

Keywords:

PV power generation, PV performance, Spectral factor, Atmospheric aerosols, Urban environmen

Abstract

Photovoltaic power generation is an alternative that can contribute to achieving the goals of sustainable development in the energy sector. With the installation of small PV power plants, the application of photovoltaic technology in urban centers has been widely pointed out as a viable alternative for distributed generation close to large consumer centers. At the same time that the application of photovoltaic technologies presents a continuous growth, air pollution, a chronic problem in big cities, can negatively impact their productivity. Atmospheric aerosols in urban areas are the primary modulator of solar radiation attenuation in the cloudless atmosphere, especially in metropolitan regions located in regions that present dry seasons throughout the year, as is the case of São Paulo. Aerosols cause the attenuation of the total amount of solar radiation incident on the surface as well as alter its spectral distribution. Therefore, this work sought to investigate how the variation in the amount and nature of atmospheric aerosols can affect the performance of photovoltaic plates operating in the metropolitan region of São Paulo through the analysis of the spectral factor of photovoltaic modules. By analyzing the historical series of the optical properties of aerosols, it was possible to identify a significant influence of aerosols from fires in other regions of the country, especially during the dry season of the year. Furthermore, it was possible to observe the same seasonality in the spectral factor of the crystalline silicon photovoltaic modules in operation, resulting in a lag of up to 5% of the spectral performance of the modules. This variation in performance followed the atmospheric scenarios with high AOD and water vapor.

Downloads

Author Biographies

Luis Gustavo Bet, Universidade Federal de São Paulo

Universidade Federal de São Paulo, Campus Diadema. Diadema, São Paulo.

Fernando Ramos Martins, Universidade Federal de São Paulo

Universidade Federal de São Paulo, Campus Baixada Santista. Santos, São Paulo.

Roberto Zilles, Universidade de São Paulo

Universidade de São Paulo, Cidade Universitária.

References

Alonso-Abella, M., Chenlo, F., Nofuentes, G., Torres-Ramirez, M., 2014. Analysis of spectral effects on the energy yield of different PV (photovoltaic) Technologies: The case of four specific sites. Energy, vol. 67, pp. 435-443.

Atlas brasileiro de energia solar / Enio Bueno Pereira; Fernando Ramos Martins; Andre Rodrigues Goncalves; Rodrigo Santos Costa; Francisco J. Lopes de Lima; Ricardo Ruther; Samuel Luna de Abreu; Gerson Maximo Tiepolo; Silvia Vitorino Pereira; Jefferson Goncalves de Souza ‐‐ 2.ed. ‐‐ Sao Jose dos Campos : INPE, 2017. pp. 88

Castanho, A. D. A., & Artaxo Netto, P. E., 2001. Wintertime and summertime Sao Paulo aerosol source apportionment study. Atmospheric Environment, vol. 35( 29), pp. 4889-4902.

CETESB. Secretaria de Infraestrutura e Meio Ambiente. Qualidade do ar no estado de Sao Paulo 2018. Sao Paulo: Cetesb, 2019. Disponivel em: https://cetesb.sp.gov.br/ar/publicacoes-relatorios/. Acesso em: 03 abr. 2021.

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanre, D., Slutker, I., 2002. Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations. Journal of Atmospheric Science, vol. 59, n. 3, pp. 590 – 608.

Gueymard, C. A., Ruiz-Arias, J.A., 2016. Extensive worldwide validation e climate sensitivity analysis of direct irradiance prediction from 1-min global irradiance. Solar energy, vol. 128, pp. 1-30.

Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Nakajima, T., Lavenu, F., Jankowiak, I., Smirnov, A., 1998. AERONET – A Federated Instrument Network and Data Archive for Aerosols Characterization. Remote Sensing of Environment, vol. 66, n. 1, pp. 1- 16.

Horvath, H., 2000. Aerosols – An introduction. Journal of Environmental Radioactivity, vol. 51, n. 1, pp. 5-25.

IEA, International Energy Agency. Solar PV Tracking Clean Energy Progress. Disponivel em:

<https://www.iea.org/tcep/power/renewables/solar/> Acesso em: 18 de novembro de 2018.

IPCC, Climate Change 2013, The Physical Science Basis. Chapter 7 – Clouds and Aerosols. 2013.

IRENA, International Renewable Energy Agency. LCOE 2010-2017. 2019. Disponivel em:

<https://www.irena.org/Statistics/View-Data-by-Topic/Costs/LCOE-2010-2017>. Acesso em: 10 jul. 2019.

IRENA, International Renewable Energy Agency. Solar Energy Data: Installed Capacity Trends. 2018. Disponivel em: <https://www.irena.org/solar>. Acesso em: 10 jul. 2019.

Ishii, T., Otani, K., Takashima, T., 2011. Effects of solar spectrum and module temperature on outdoor performance of photovoltaic modules in round-robin measurements in Japan. Progress in Photovoltaics, vol. 19, n. 2, pp. 141-148.

Li, X., Wagner, F., Peng, W., Yang, J., Mauzerall, D. L., 2017. Reduction of solar photovoltaic resources due to air pollution in China. PNAS. vol. 114, n. 45, pp. 11867-11872.

Martins, V. J., Artaxo, P., Kaufman, Y. J., Castanho, A. D., Remer, L. A., 2009. Spectral absorption properties of aerossol particles from 350 – 2500nm. Geophysical Research Letters, vol. 36, n. 13, pp. 1-5.

Neher, I., Buchmann, T., Crewell, S., Evers-Dietze, B., Pfeilsticker, K., Pospichal, B., Schirrmeister, C., Meilinger, S., 2017. Energy Procedia, vol. 125, pp. 170-179.

Nobre, A. M., Karthik, S., Liu, H., Yang, D., Martins, F. R., Pereira, E. B., Ruther, R., Reindl, T., Peters, I. M., 2016. On the impacto of haze on the yield of photovoltaic system in Singapore. Renewable Energy, vol. 89, pp. 389-400.

Nofuentes, G., Garcia-Domingo, B., Munoz, J. V., Chenlo, F., 2014. Analysis of dependence of the spectral factor of some PV technologies on the solar spectrum distribution. Applied Energy, vol. 113, pp. 302-309. Pin, M. L. F., 2017. Levantamento do potencial de geracao fotovoltaica com sistemas de microgeracao aplicados a arquitetura nos edificios do Campus Sao Paulo da USP, Dissertacao de Mestrado, IEE -USP, Sao Paulo.

Polo, J., Alonso-Abella, M., Ruiz-Arias, J. A., Balenzategui, J. L. 2017. Worldwide analysis of spectral factors for seven photovoltaic Technologies. Solar Energy, vol. 142, pp. 194-203.

Rosa, D. J. DE M., 2003. Caracterizacao da radiacao solar: o caso da cidade universitaria/USP e da Ilha do Cardoso/Cananeia. [s.l.] Tese de Doutorado, Universidade de Sao Paulo, Sao Paulo.

Sekiguchi, M., 2003. A study of the direct and indirect effects of aerosols using global satellite data sets of aerosols and cloud parameters. Journal of Geophysical Research, vol. 108, n. 22, pp. 1 -15.

Smirnov, A., Holben, B. N., Eck, T. F., Dubovik, O., Slutsker, I., 2000. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sensing of Environment, vol. 73, n. 3, pp. 337-349.

Stark, C., Theristis, M., 2015. The impacto of Atmospheric Parameters on the Spectral Perfomance of Multiple Photovoltaic Technologies, New Orleans – LA, 42o PVSC - Photovoltaic Specialist Conference.

Toledano, C., Cachorro, V. E., Berjon, A., de Frutos, A. M., Sorribas, M., de la Morena, B. A., Goloub, P., 2007. Aerosol optical depth and Angstron exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quaterly Journal of the Royal Meteorological Society, vol. 133, n. 624, pp. 795 – 807.

Yamasoe, M. A., Rosario, N. M. E., Barros, K. M., 2017. Downward solar global irradiance at the surface in Sao Paulo City – The climatological effects of aerosols and clouds. Journal of Geophysical Resource: Atmospheres, vol. 122, pp. 391- 404.

Yu, X., Lu, R., Liu, C., Yuan, L., Shao, Y., Zhu, B., Lei, L., 2017. Seasonal variation of columnar aerosol optical properties and radiative forcing over Beijing, China. Atmospheric Environment, vol. 166, pp. 340-350.

Zhang, M., Ma, Y., Gong, W., Liu, B., Shi, Y. F., Chen, Z., 2018. Aerosol optical properties and radiative effects: Assessment of urban aerosols in central China using 10-year observations. Atmospheric Environment, vol. 182, pp. 275-285.

Published

2022-08-16

How to Cite

Bet, L. G., Rosario, N. M. Évora do, Martins, F. R., & Zilles, R. (2022). FORMAT INSTRUCTIONS FOR PAPERS SUBMITTED TO THE CONGRESS. Anais Congresso Brasileiro De Energia Solar - CBENS, 1–10. https://doi.org/10.59627/cbens.2022.1108

Issue

Section

Anais