DIFFERENT SOILING EXTRACTION METHODS APPLIED IN DISTINCT CLIMATE REGIONS
DOI:
https://doi.org/10.59627/cbens.2022.1153Keywords:
Solar Energy, Photovoltaic, SoilingAbstract
Dust deposition on the surface of photovoltaic (PV) modules causes significant losses in photovoltaic systems, with power drops of up to 50% in some regions. This means it can lead to large financial losses due to lower energy yield of PV systems and higher Operation & Maintenance (O&M) costs and uncertainty in PV performance. Therefore, accurately monitoring and quantifying soiling is essential to establishing an optimal cleaning schedule. The scope of this work is to present the methodology for extracting soiling losses in real time for photovoltaic (PV) systems located in different climatic conditions. This work describes several methodologies to quantify soiling losses using PV performance data, without the need for soiling stations or additional labor and maintenance costs. The applicability of the different methodologies is validated in the different localities, presenting average values extracted from soiling ratios of 0.98 for Jaén and Nicosia and 0.99 for Sidirokastro. These results explain the climatic characteristics of each location, a factor that directly affects the analysis of soiling in photovoltaic systems.
Downloads
References
AlDowsari, A., Bkayrat, R., AlZain, H., Shahin, T., 2014. Best practices for mitigating soiling risk on PV power plants. 2014 Saudi Arab. Smart Grid Conf. SASG 2014 0–6. https://doi.org/10.1109/SASG.2014.7274291
Bergin, M.H., Ghoroi, C., Dixit, D., Schauer, J.J., Shindell, D.T., 2017. Large Reductions in Solar Energy Production Due to Dust and Particulate Air Pollution. Environ. Sci. Technol. Lett. 4, 339–344. https://doi.org/10.1021/acs.estlett.7b00197
Bessa, J.G., Micheli, L., Almonacid, F., Fernández, E.F., 2021. Monitoring Photovoltaic Soiling: Assessment, Challenges and Perspectives of Current and Potential Strategies. iScience 102165. https://doi.org/10.1016/j.isci.2021.102165
Coello, M., Boyle, L., 2019. Simple Model for Predicting Time Series Soiling of Photovoltaic Panels. IEEE J. Photovoltaics 9, 1382–1387. https://doi.org/10.1109/JPHOTOV.2019.2919628
Deceglie, M.G., Micheli, L., Muller, M., 2018. Quantifying Soiling Loss Directly from PV Yield. IEEE J. Photovoltaics 8, 547–551. https://doi.org/10.1109/JPHOTOV.2017.2784682
Deceglie, M.G., Muller, M., Jordan, Di.C., Deline, C., 2019. Numerical Validation of an Algorithm for Combined Soiling and Degradation Analysis of Photovoltaic Systems. Conf. Rec. IEEE Photovolt. Spec. Conf. 3111–3114. https://doi.org/10.1109/PVSC40753.2019.8981183
Dobos, A.P., 2014. PVWatts Version 5 Manual (NREL/TP-6A20-62641). Natl. Renew. Energy Lab. 20.
Gostein, M., Duster, T., Thuman, C., 2015. Accurately measuring PV soiling losses with soiling station employing module power measurements. 2015 IEEE 42nd Photovolt. Spec. Conf. PVSC 2015. https://doi.org/10.1109/PVSC.2015.7355993
Gupta, V., Sharma, M., Pachauri, R.K., Dinesh Babu, K.N., 2019. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Sol. Energy 191, 596–622. https://doi.org/10.1016/j.solener.2019.08.079
Ilse, K., Micheli, L., Figgis, B.W., Lange, K., Daßler, D., Hanifi, H., Wolfertstetter, F., Naumann, V., Hagendorf, C., Gottschalg, R., 2019. Techno-Economic Assessment of Soiling Losses and Mitigation Strategies for Solar Power Generation 1–19. https://doi.org/10.1016/j.joule.2019.08.019
International Electrotechnical Commission, 2017. Photovoltaic system performance – Part 1: Monitoring (IEC 61724-1, Edition 1.0, 2017-03).
Jamil, W.J., Abdul Rahman, H., Shaari, S., Salam, Z., 2017. Performance degradation of photovoltaic power system: Review on mitigation methods. Renew. Sustain. Energy Rev. 67, 876–891. https://doi.org/10.1016/j.rser.2016.09.072
Kimber, A., Mitchell, L., Nogradi, S., Wenger, H., 2007. The effect of soiling on large grid-connected photovoltaic systems in California and the Southwest Region of the United States. Conf. Rec. 2006 IEEE 4th World Conf. Photovolt. Energy Conversion, WCPEC-4 2, 2391–2395. https://doi.org/10.1109/WCPEC.2006.279690
Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130
Mondal, S., Mondal, A.K., Sharma, A., Devalla, V., Rana, S., Kumar, S., Pandey, J.K., 2018. An overview of cleaning and prevention processes for enhancing efficiency of solar photovoltaic panels. Curr. Sci. 115, 1065–1077. https://doi.org/10.18520/cs/v115/i6/1065-1077
Schill, C., Brachmann, S., Koehl, M., 2015. Impact of soiling on IV-curves and efficiency of PV-modules. Sol. Energy 112, 259–262. https://doi.org/10.1016/j.solener.2014.12.003
Shrestha, S., Taylor, M., 2016. Soiling Assessment in Large-Scale PV Arrays [WWW Document]. SolarPro Mag.
Toth, S., Hannigan, M., Vance, M., Deceglie, M., 2020. Predicting photovoltaic soiling from air quality measurements. IEEE J. Photovoltaics 1–6.
You, S., Lim, Y.J., Dai, Y., Wang, C.H., 2018. On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities. Appl. Energy 228, 1136–1146. https://doi.org/10.1016/j.apenergy.2018.07.020