IMPACT EVALUATION OF HARMONIC DISTORTIONS CAUSED BY PHOTOVOLTAIC SYSTEMS ON THE POWER FACTOR OF THE ELECTRICAL DISTRIBUTION NETWORK

Authors

  • Fernando H. G. Schmidt Universidade Federal de Santa Maria
  • Mauricio Sperandio Universidade Federal de Santa Maria
  • Rafael Crochemore Ney Grupo Equatorial

DOI:

https://doi.org/10.59627/cbens.2022.1240

Keywords:

Distributed Generation, Harmonics, Power Factor

Abstract

With the growing interest of consumers of electric energy for the benefits brought by the Distributed Generation (DG), there is a concern about the impact that such insertion will bring to the distribution networks. After the changes brought to the sector by the Normative Resolution (REN) 687/15 of the National Electric Energy Agency (ANEEL), which led to the rapid growth of the sector in the country, there was a need for studies to mitigate the technical and commercial impacts that this type of generation brings to the electricity sector. One of the impacts brought by the insertion of DG in the distribution networks is the reduction of its Power Factor (PF), due to the characteristic of distributed generators of only injecting active energy, remaining with the consumption of reactive power. There is, however, another point brought by GD that also negatively impacts the PF of the network, which is the insertion of harmonic distortions by photovoltaic inverters. In this work, a study and simulations of the impact of the insertion of harmonic distortions caused by photovoltaic systems on the power factor of the distribution grid will be presented.

Downloads

References

ABSOLAR. 2021. “ABSOLAR - Associação Brasileira de Energia Solar Fotovoltaica”. 2021 <https://www.absolar.org.br/mercado/infografico/> [accessed 11 December 2021].

Abud, T. P., B. S.M.C. Borba, R. S. Maciel, I. De S. Machado and M. Z. Fortes. 2017. “Voltage Control Analysis of Photovoltaic Inverters Using a Real Brazilian Distribution Network”. 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems, PEDG 2017. <https://doi.org/10.1109/PEDG.2017.7972478>.

ANEEL. 2021. “PRODIST - Módulo 8 – Qualidade Da Energia Elétrica”, 88.

ANEEL. 2022. “Geração Distribuída - ANEEL”. 2022 <http://www2.aneel.gov.br/scg/gd/GD_Fonte.asp> [accessed 24 January 2022].

Canal Solar. 2021. “Brasil Bate Recorde e Ultrapassa Marca de 141 Mil Empregos No Setor Solar”. December 29, 2021 <https://canalsolar.com.br/brasil-bate-recorde-e-ultrapassa-marca-de-141-mil-empregos-no-setor-solar/> [accessed 24 January 2022].

Castro, Nivalde de and Guilherme Dantas. 2017. Distributed Generation: International Experiences and Comparative Analyses.

Chidurala, Annapoorna, Tapan Kumar Saha and Ramesh C Bansal. 2014. “Harmonic Emissions in Grid Connected PV Systems: A Case Study on a Large Scale Rooftop PV Site”. <https://doi.org/10.1109/PESGM.2014.6939147>.

Cortez Do Prado, Carolina, Daniel Pinheiro Bernardon, Camilla Leimann Pires, Criciéle Castro Martins and Felipe Cirolini Lucchese. 2016. “Analysis of Distributed Generation Impact on the Voltage Stability Margin”. Proceedings - 2016 51st International Universities Power Engineering Conference, UPEC 2016 2017-Janua: 1–6. <https://doi.org/10.1109/UPEC.2016.8113994>.

Dulău, Lucian Ioan, Mihail Abrudean and Dorin Bică. 2015. “SCADA Simulation of a Distributed Generation System with Storage Technologies”. Procedia Technology 19: 665–672. <https://doi.org/10.1016/j.protcy.2015.02.094>.

FGV. 2016. “Distributed Energy Resources”. Distributed Energy Resources, no. 7: 116.

Figueira, Henrique Horst, Helio Leaes Hey, Luciano Schuch, Cassiano Rech and Leandro Michels. 2015. “Brazilian Grid-Connected Photovoltaic Inverters Standards: A Comparison with IEC and IEEE”. IEEE International Symposium on Industrial Electronics 2015-Septe: 1104–1109. <https://doi.org/10.1109/ISIE.2015.7281626>.

Fragoas, Alexandre Graciolli. 2008. “Estudo De Caso Do Uso De Bancos De Capacitores Em Uma Rede De Distribuição Primária – Indicativos Da Sua Viabilidade Econômica”, 63. <https://www.google.com.br/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwja9fHc_MTNAhVFGZAKHaEOCq8QFggeMAA&url=http://www.tcc.sc.usp.br/tce/disponiveis/18/180500/tce-26032010-145421/publico/Fragoas_Alexandre_Graciolli.pdf&usg=AFQjCNESjONtESKEzo5bmnZE>.

IEEE. 2014. “IEEE Std 519-2014”. IEEE Std 519-2014 (Revision of IEEE Std 519-1992) 2014: 1–29. <http://ieeexplore.ieee.org/servlet/opac?punumber=6826457>.

Marcelo Gradella Villalva. 2012. Energia Solar Fotovoltaica - Conceitos e Aplicações. Nunes, Evandro. 2017. “Análise de Impactos Na Rede de Distribuição de Energia Elétrica Decorrentes Da Inserção de Sistemas de Geração Fotovoltaicos”. Natal.

ONS. 2021. “O Sistema Em Números”. 2021 <http://www.ons.org.br/paginas/sobre-o-sin/o-sistema-em-numeros> [accessed 10 December 2021].

Pepermans, Guido, J. Driesen, D. Haeseldonckx, R. Belmans and W. D’haeseleer. 2005. “Distributed Generation: Definition, Benefits and Issues”. Energy Policy 33: 787–798. <https://doi.org/10.1016/j.enpol.2003.10.004>.

Souza, Paulo Andrade, Gabriel Belas D. Santos, Vinicius Mariano and Daniel Barbosa. 2018. “Analysis of Active and Reactive Power Injection in Distributed Systems with Photovoltaic Generation”. SBSE 2018 - 7th Brazilian Electrical Systems Symposium, 1–6. <https://doi.org/10.1109/SBSE.2018.8395654>.

Vieira, A. C. G. 1989. Correção Do Fator de Potência. 2a. Rio de Janeiro: Manuais CNI.

Published

2022-08-16

How to Cite

Schmidt, F. H. G., Sperandio, M., & Ney, R. C. (2022). IMPACT EVALUATION OF HARMONIC DISTORTIONS CAUSED BY PHOTOVOLTAIC SYSTEMS ON THE POWER FACTOR OF THE ELECTRICAL DISTRIBUTION NETWORK. Anais Congresso Brasileiro De Energia Solar - CBENS, 1–10. https://doi.org/10.59627/cbens.2022.1240

Issue

Section

Anais