EXPERIMENTAL STUDY OF PACKED BED OF STONES AT HIGH TEMPERATURE USING COPPER SLAG AS STORAGE MATERIAL
DOI:
https://doi.org/10.59627/cbens.2022.1241Keywords:
Thermal storage, Experimental study, Rock packed bed, Copper slagAbstract
Thermal energy storage has been shown to be highly beneficial when coupled to solar process heat and power generation systems. Currently, it is used in concentrated power plants using molten salt as storage material, but this technology has considerable drawbacks, as it can affect plant performance. Packed-bed storage using air as heat transfer fluid has been shown to be a competitive alternative, especially when industrial waste materials are used, allowing high storage performance. This study considers an experimental setup of a horizontal tank filled with copper slags, operating within the medium to high-temperature range, in a charge-discharge cycle. The results show that the high thermal capacity of the slags induces a high thermal inertia and energy density of the storage tank, without any inconvenience associated with the high thermal gradients.
Downloads
References
Agalit, H., Zari, N., Maafouri, M., (2017). Thermophysical and chemical characterization of induction furnace slags for high temperature thermal energy storage in solar tower plants. Solar Energy Materials and Solar Cells 172, 168–176.
Agalit, H., Zari, N., & Maaroufi, M. (2020). Suitability of industrial wastes for application as high temperature termal energy storage (TES) materials in solar tower power plants – A comprehensive review. Solar Energy, 208(September), 1151–1165. https://doi.org/10.1016/j.solener.2020.08.055
Curto, P. A., & Stern, G. (1980). Thermal storage using slag. Alternative Energy Sources;(United States), 1(CONF-801210-).
Calderón-Vásquez, I., Segovia, V., Cardemil, J. M., & Barraza, R. (2021). Assessing the use of copper slags as termal energy storage material for packed-bed systems. Energy, 227.
El Alami, K., Asbik, M., & Agalit, H. (2020). Identification of natural rocks as storage materials in thermal energy storage (TES) system of concentrated solar power (CSP) plants – A review. Solar Energy Materials and Solar Cells, 217(September), 110599. https://doi.org/10.1016/j.solmat.2020.110599
Fernandes, D., Pitié, F., Cáceres, G., & Baeyens, J. (2012). Thermal energy storage: “How previous findings determine current research priorities.” Energy, 39(1), 246–257. https://doi.org/10.1016/j.energy.2012.01.024
Gil, A., Calvet, N., Ortega, I., Risueño, E., Faik, A., & Rodríguez-aseguinolaza, J. (2014). Characterization of a by-product from steel industry applied to thermal energy storage in Concentrated Solar Power. Eurotherm Seminar #99 Advances in Thermal Energy Storage, 1–9.
Intrator, J., & Dunn, B. S. (2011). 2020 Strategic Analysis of Energy Storage in California: Final Project Report: Public Interest Energy Research (PIER) Program. California Energy Commission.
Krumbein, W. C., & Sloss, L. L. (1951). Stratigraphy and sedimentation (Vol. 71, No. 5, p. 401). LWW.
Leister,. Hotwind Premium & Hotwind System User’s Guide. Leister Technologies AG.; 2011.
Navarro, M. E., Martínez, M., Gil, A., Fernández, A. I., Cabeza, L. F., Olives, R., & Py, X. (2012). Selection and characterization of recycled materials for sensible thermal energy storage. Solar Energy Materials and Solar Cells, 107, 131–135. https://doi.org/10.1016/j.solmat.2012.07.032
Ortega-Fernández, I., Calvet, N., Gil, A., Rodríguez-Aseguinolaza, J., Faik, A., & D’Aguanno, B. (2015). Thermophysical characterization of a by-product from the steel industry to be used as a sustainable and low-cost thermal energy storage material. Energy, 89, 601–609. https://doi.org/10.1016/j.energy.2015.05.153