CARACTERIZATION OF WIND DISTRIBUCTION IN SURFACE TO DECENTRALIZED WIND ENERGY GENERATION
DOI:
https://doi.org/10.59627/cbens.2016.1273Keywords:
Cerrado, pumping water, irrigationAbstract
Wind power has gained space in Brazil’s energy matrix, being a clean and inexhaustible source. The wind speed data were collected by Wind Set WA25 anemometer from Vaisala Company, installed in a tower at 10 m from ground at the Automatic Weather Station belonging to Meteorological National Institute, located at School farm of IF Goiano, Iporá-GO. The wind speed variability was represented by the Weibull frequency distribution, a probability density function of two parameters (k e c). We used the parameters k e c, to correlate the Gamma function with the annual average wind speed, the variance and power mean density. We made a wind profile to evaluate the behavior of historical average speeds at higher altitudes which the measured by anemometer, to estimate the gain in power density. The values of k for all heights were close to 1 which corresponds to a wind regime highly variable, and c values were also low representing a low average speed of the local. The location was characterized as being unfavorable for the application of decentralized wind turbines for power generation.
Downloads
References
AL-NASSAR, W.; ALHAJRAF, S.; AL-ENIZI, A.; AL-AWADHI, L. 2005. Potential wind power generation in the State of Kuwait. Renewable Energy. v. 30, n. 14, p. 2149–2161.
ALVES, A.J.J. 2010. Analise regional de energia eólica no Brasil Rev. Bras. de gestão e Desen. Regional v.6 n.1, p.167-169.
CASTRO, R.M.G. 2004. Introdução à energia eólica. Lisboa: Portugal: Universidade Técnica de Lisboa.
CELIK, A.N. 2004. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey. Renewable Energy. v. 29, n. 4, apr., p. 593–604.
FARRET, A.F. 2010. Aproveitamento de pequenas fontes de energia elétrica. 2ª Edição. Santa Maria. Ed. da UFSM. GABRIEL FILHO, L. R. A.; CREMASCO, C.P.; SERAPHIM, O.J.; CANEPPELE, F.L. 2011. Caracterização analítica e geométrica da metodologia geral de determinação de distribuições de Weibull para o regime eólico e suas aplicações. Eng. Agríc., Jaboticabal, v. 31, n. 1.
GARRAD, A. 1991. Wind energy in Europe: A plan of action. Summary Report of Wind Energy in Europe. Time for action. The European Wind Energy Association.
GRAH, V.F.; PONCIANO, I.M.; BOTREL, T.A. 2014. Potencial for wind energy generation in Piracicaba, SP, Brazil. Rev. Bras. de Eng. Agrrícola. v.18, n. 5, p. 559-564.
GOIAS 247.2015. Crise Hídrica preocupa governo e agricultores. Disponível em: < http://www.brasil247.com/pt/247/goias247/169077/Crise-h%C3%ADdrica-preocupa-governo-eagricultores.html > acesso em: 18 de outubro de 2015.
GOSWAMI, D.Y. 1986. Alternative energy in agriculture. Florida. Boca Raton: CRC Press.
HALACY, D.S. 1977. Earth, water, wind, and sun, our energy alternatives. 1 ed. New Yourk: Harper & Row.
Hassan, U.; Sykes, D.M. 1990. Wind structure and statistics. In: Freris, L.L. (Ed.). Wind energy conversion systems. New York: Prentice Hall.
IICA- Instituto Interamericano de Cooperação para a Agricultura. 2014. Análise Territorial para o Desenvolvimento da Agricultura Irrigada. FEALQ, USP, Piracicaba.
LI, M.; LI, X. 2005. MEP-type distribution function: a better alternative to Weibull function for wind speed distributions. Renewable Energy. v. 30, n. 8, p. 1221–1240.
LUN, I. Y.F.; LAM, J.C. 2000. A study of Weibull parameters using long-term wind observations. Renewable Energy. v. 20, n. 2, p. 145–153.
MIRHOSSEINI, M.; SHARIFI, F.; SEDAGHAT, A. 2011. Assessing the wind energy potential locations in province of Semnan in Iran. Renewable and Sustainable Energy Reviews. v.15, n. 1, p. 449-459.
MOSTAFAEIPOUR, A.; SEDAGHAT, A.; DEHGHAN-NIRI, A.A.; KALANTAR, V. 2011. Wind energy feasibility study for city of Shahrbabak in Iran. Renewable and Sustainable Energy Reviews. v. 15, n. 6, p. 2545- 2556.
QOAIDER, L. & STEINBRECHT, D. 2010. Photovoltaic system: A cost competitive option to supply energy to offgrid agricultural communities in arid regions. Applied Energy. v. 87, p. 427-435.
SAFARI, B.; GASORE, J. 2010. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda. Renewable Energy. v. 35, n. 12, p. 2874–2880.
TOURÉ, S. 2005. Investigations on the eigen-coordinates method for the 2-parameter weibull distribution of wind speed. Renewable Energy. v. 30. P. 511-521.
URTASUN, A.; SANCHIS, P.; SAN MARTÍN, I.; LÓPEZ, J.; MARROYO, L. 2013. Modeling of small wind turbines based on PMSG with diode bridge for sensorless maximum power tracking. Renewable Energy. v.55, jul., p. 138– 149.
WEEKES, S.M.; TOMLIN, A.S. 2013. Evaluation of a semi-empirical model for predicting the wind energy resource relevant to small-scale wind turbines. Renewable Energy, v. 50, n. 2, p. 280–288.
ZHOU, W.; YANG, H.; FANG, Z. 2006. Wind power potential and characteristic analysis of the Pearl River Delta region, China. Renewable Energy. v. 31, n. 6, may, p. 739–753.