A METHODOLOGY FOR MISSING DATA IN MEASURING SOLAR RADIATION
DOI:
https://doi.org/10.59627/cbens.2008.1335Keywords:
Solar Radiation, Data Processing, Time SeriesAbstract
One of the most important requirements to make a project of rational use of solar energy is the precise knowledge of the temporal-spatial distribution of the solar resource on the terrestrial surface. For that reason, the Solar Energy Group at the National University of Rio Cuarto in Argentina, is measuring and recording data of global and direct solar radiation. Many possibilities of different kinds of errors there exist in this process, but the most significant problem is the lack of data. Then, it would be necessary to have a methodology that indicates what to do in this situation, and for that reason, this work performs an study about the data processing of the obtained measurements to infer values to be incorporated to the series in situations where the data are lost. To incorporate lost data, the Time Series Analysis based in spatial state models were used.
Downloads
References
Abril, J. C. , (1999) Análisis de serie de tiempo basado en modelos de espacio de estado, Eudeba, Argentina
Adaro J., Césari D., Lema A., Galimberti P. y Barral J. (2000) Estudio comparativo de serie de radiación solar.
Proceedings of the Millenium Solar Forum, México.
Aguiar R. y Collares Pereira M. (1992) Tag: A time dependent, autoregressive, gaussian model for generating
synthetichourly radiation. Solar Energy 49, 3, 167-174.
Aguiar, R.J., Collares-Pereira, M. and Conde, J.P. (1988) Simple procedure for generating sequences of daily radiation values using a library of Markov transitions matrices. Solar Energy vol. 40 No. 3, pp. 269-279.
Avila Blas O. J., Abril J. C. y Lesino G. (1999) Análisis estadístico estructural de series de radiación diarias. Avances en Energías Renovables y Medio Ambiente 3, 2, 11.17-11.20.
Avila Blas O. J., Abril J. C. y Lesino G. (2000) Radiación y temperaturas diarias: Un modelo de correlación estructural.Avances en Energías Renovables y Medio Ambiente 4, 2, 11.31-11.36
Box, G. and G. Jenkins. (1976).Time Series Analysis: Forecasting an Control (Revised ed) Holden-Day, Inc: San Francisco.
Harvey A.(1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambrid University Press: Cambridge.
Harvey, A. and J. Durbin. (1986). The effects of seat belt legislation on Britis road road casualties: a case study in structural time series modeling. J. Roy. Statis. Soc., A, 149, 187-227.
Harvey A. y Shepard N. (1993) Structural Time Series Models, Handbook of Statistics 11, 621-302.
Kalman, R. (1960). A new approach to linear filtering an prediction problems. Trans. ASME, J. Basic Eng., 82D, 35-45.
Koopman S. J., Harvey A. C., Doornik J. A. y Shepard N. (1995). Stamp 5.0 Structural Time Series Analyser, Modeller and Predictor. 1a. edición. Chapman and Hall, London.
Kolmogorov, A. (1941). Interpolation and extrapolation von stationaren Zufalligen Folgen. Bull. Acad. Sci (Nauk). USSR, Ser. Math., 5, 3-14.
Wiener, N. (1949). The Extrapolation, Interpolation an Smoothing of Stationary Time Series with Engineering Aplications. Wiley: New York.