CINÉTICA DEL SECADO SOLAR PARA PEREJIL

Authors

  • María Isabel Pontin Universidad Nacional de Río Cuarto
  • Alba Ivana Lema Universidad Nacional de Río Cuarto
  • Jorge Mario Morsetto Universidad Nacional de Río Cuarto
  • Fabián Héctor Romero Universidad Nacional de Río Cuarto

DOI:

https://doi.org/10.59627/cbens.2008.1450

Keywords:

Solar drying, Drying kinetics, Thin-layer drying, D rying of parsley, Effective diffusivity

Abstract

The kinetics of thin-layer drying for leaves and stems of parsley using solar drying in clear day conditions is studied in this paper. Experiments were performed in and indirect dryer, designed and built in the Solar Energy Laboratory of National University of Río Cuarto, Argentina. This dryer has a drying cabinet structure made of wood and covered by black polyethylene, which receives hot air from a solar collector. According to the experiences, three different models of solutions for the second Fick’s Law were investigated assuming that diffusion coefficient is constant or variable with the Fourier number (Fo). The drying data were fitted to determine the constants of the evaluated models. The performance of the models was investigated evaluating the goodness of fit. Results show a variable diffusion coefficient while a constant surface concentration was the best boundary condition. Values for the effective diffusivity, plots of radiation, temperature and humidity obtained during the days of drying experiments are shown.

Downloads

Author Biographies

María Isabel Pontin, Universidad Nacional de Río Cuarto


Universidad Nacional de Río Cuarto, Facultad de Ingeniería, Grupo de Energía Solar

Alba Ivana Lema, Universidad Nacional de Río Cuarto

Universidad Nacional de Río Cuarto, Facultad de Ingeniería, Grupo de Energía Solar

Jorge Mario Morsetto, Universidad Nacional de Río Cuarto

Universidad Nacional de Río Cuarto, Facultad de Ingeniería, Grupo de Energía Solar

Fabián Héctor Romero, Universidad Nacional de Río Cuarto

Universidad Nacional de Río Cuarto, Facultad de Ingeniería, Grupo de Energía Solar

 

References

Ait Mohamed L., Kouhila M., Jamali A, Lahsasni S, Kechaou N., Mahrouz M., 2005. Single drying behaviur of Citrus aurantium leaves under forced convection. Energy, Conversion & Management 46, 1473-1483.

Adom K.K., Dzogbefia V.P. y Ellis W. O. 1997. Combined effect of drying time thickness on the solar drying of okra, Journal of the Science of Food and Agriculture 73, pp. 315–320.

Akpinar E.K. y Bicer Y. 2004. Modelling of the drying of eggplants in thin-layer, International of Journal of Food Science and Technology 39, pp. 1–9.

Crank J., 1975. The mathematics of diffusion (2nd ed.), Clarendon Press, Oxford, London.

Díaz-Maroto M.C., Vinas M.A.G. y Cabezudo M.D. 2003. Evaluation of the effect of drying on aroma of parsley by free choice profiling, European Food Research Technology 216, 2003, pp. 227–232.

Doymaz I. y Pala M., 2002. Hot-air drying characteristics of red pepper, Journal of Food Engineering 55, 2002, pp. 331–335.

Ertekin, C y Yaldiz, O. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.

Gerla, P, Martinez Garreiro, Zecchi, Berta, Clavijo, L., 2005. Modelling vacuum and convective dehidration of vegetables. “4º Mercosur Congress on Process Systems Engineering” (Enpromer). Agosto 2005. Village Rio das Pedras - Rio de Janeiro- Brasil. http://www.enpromer2005.eq.ufrj.br/nukleo/pdfs/0730_paper_730.pdf

Günhan, T., Demir, V., Hancioglu, E. y Hepbasli, A., 2005. Mathematical modeling of drying of bay leaves. Energy Conversion and Management, 46x (11-12), 1667-1679.

Lema A., Pontin M., Sanmartino A., Ziletti M., Martinello M., 2007. Características del proceso de secado en capa delgada del perejil. Avances en Energías Renovables. Vol. 11 08-75 08-82.

Midilli A., 2001. Determination of pistachio drying behaviour and conditions in solar drying system, International Journal of Energy Research 25 , pp. 715–725.

Midilli A. y Kucuk H. 2003. Mathematical modelling of thin layer drying of pistachio by using solar energy Energy Conversion and Management, 44, 1111-1122.

Midilli A, Kucuk H, Yapar Z., 2002. A new model for single layer drying. Drying Technology 2002, 20(7), 1503-1513, Madamba P.S., Driscoll R.H. y Buckle K.A., 1996. Thin-layer drying characteristics of garlic slices, Journal of Food Engineering 29, pp. 75–97.

Ndawula J., Kasaba J. D. y Byaruhanda Y. B., 2004. Alterations in fruit and vegetable β-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers. African Health Science. 4(2):150-30.

Pontin M., Lema A., Ritta R., Sanmartino A., Ghirardotto M. 2005. Secadero solar para frutas – Estudio de caso. Avances en Energías Renovables. Vol. 9 pag. 02-43 02-48

Sarsavadia P.N., Sawhney R.L., Pangavhane D.R. y Singh S.P., (1999). Drying behaviour of brined onion slices, Journal of Food Engineering 40 , pp. 219–226.

Senadeera W., Bhandari B.R., Young G. y Wijesinghe B., 2003. Influence of shapes of selected materials on drying kinetics during fluidized bed drying, Journal of Food Engineering 58, pp. 277–283.

Simal S., Rosselló C., Berna A. y Mulet A., 1998. Drying of shrinking cylinder-shaped bodies, Journal of Food Engineering 37 pp. 423–435.

Soysal Y., 2004. Microwave drying characteristics of parsley, Biosystems Engineering 89 pp. 167–173.

Togrul, I. y Pehlivan, D., 2003. Modeling of drying kinetics of single apricot. Drying Technology, 19, 583-596.

Yaldiz, O. y Ertekin, C., 2001. Thin layer solar drying of some vegetables. Journal of Food Engineering, 63, 349-359.

Zogzas, N. P., Maroulis, Z. B. and Marinos-Kouris, D., 1996. Moisture diffusivity data compilation in foods tuffs. Drying Technology, 14, 2225-2253.

Published

2008-11-10

How to Cite

Pontin, M. I., Lema, A. I., Morsetto, J. M., & Romero, F. H. (2008). CINÉTICA DEL SECADO SOLAR PARA PEREJIL. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2008.1450

Issue

Section

Anais