DEVELOPMENT OF COMPUTER TOOL FOR ESTIMATED ELECTRICITY ENERGY PRODUCTION THROUGH PHOTOVOLTAIC SYSTEMS
JAÍBA SOLAR SOFTWARE
DOI:
https://doi.org/10.59627/cbens.2016.1456Keywords:
Computational Tool, Comparison, Energy ProductionAbstract
The growth of PV solar power in the country becomes fundamental the use of computer tools to development projects, for large solar plants (for compliance with recent auctions) and for small generators through distributed generation. These softwares help the designer in making the sizing of systems as well as in forecast energy output generated by it and thus, get a perspective payback time of the investment in order to realize or not the solar project. In this work, the Jaíba Solar software, version 1, is presented which is a computational tool developed in order to generate energy information for carrying out the pre-feasibility of photovoltaic projects facilitating the designer to analyze, beforehand, the power generation of a system, for any Brazilian locality, and thus make decisions for the viability of it. Thus, it was study and implemented various mathematical models in software, and their uncertainties, and conducted simulations and comparisons with the results generated by PVsyst 6.24 software.
Downloads
References
Axaopoulo, P.J., Emmanouil, D. F., Konstantinos, G. 2014. Accuracy analysis of software for the estimation and planning of photovoltaic installations. International Journal of Energy and Enviromental Engineering. Springer, pp.1-7.
Agência Nacional de Energia Elétrica (Aneel). 2011. Chamada N° 013: Projeto Estratégico: “Arranjos Técnicos e Comerciais para Inserção da Geração Solar Fotovoltaica na Matriz Energética Brasileira”. Brasília.
Caamaño, M. C. Edificios fotovoltaicos conectados a la red eléctrica: Caracterizacíon y Analisis. 1998. Tesis (Doctoral) Escuela Técnica Superior de Ingenieros de Telecomunicacíon, Departamento de Electrónica Física, Universidad Politécnica de Madrid, Madrid. 200 f.
Davies, J. A., Hay, J. E. 1978. Calculation of the solar radiation incident on an inclined surface. In Proc. First Canadian Solar Radiation Data Workshop (J. E. Hay and T. K. Won, eds.), pp. 32-58, April 17-19.
Decker, B.; Jahn, U. 1997. “Performance of 170 grid connected pv plants in northern Germany—analysis of yields and optimization potentials,” Solar Energy, vol. 59, no. 4, pp. 127–133.
Duffie, J. A.; Beckman, W. A., 2013. Solar Engineering of Thermal Processes, 4th Edition, John Wiley & Sons, Inc., New York, NY.
Gueymard, C. 2009. Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications Solar Energy, Vol. 83, No. 5, pp. 432-444.
Hay, J.E. 1979. Calculation of monthly mean solar radiation or horizontal and inclined surfaces. Solar Energy, Vol. 23, pp. 301–307.
Instituto Nacional de Pesquisas Espaciais (INPE). 2008-2010. Brasília/DF. Disponível em http://www.inpe.br/.
Instituto Nacional de Meteorologia (INMET). 1961-1990 e 2009-2010. Brasília/DF,. Disponível em http://www.inpe.br/.
Jantch, M.; Schmidt, H.; Schmid, J. 1992. Results of the concerted actions on power Conditioning and Control. 11º European Photovoltaic Solar Energy Conference, Montreux, Suiça,
Junqueira, R., Monteiro, L., Galdino, M., Villoz, M., Godoy, N., Carneiro, M., 2014. Projeto Jaíba Solar:
Desenvolvimento da Energia Solar no Brasil – Objetivos, Metodologia para Definição do Local de Instalação e Tecnologias Empregadas, V CBENS - V Congresso Brasileiro de Energia Solar, Recife-PE.
Klucher, T. M. 1978. Evaluation of models to predict iInsolation on tilted surfaces, NASA TM-78842, NASA, Lewis Research Center, Cleveland, OH, March.
Liu, B. Y. H, and R. C. Jordan. 1960. The interrelationship and characteristic distribution of direct, diffuse, and total solar radiation. Solar Energy, Vol. 10, No. 3, 4(3):1e19.
Marion , B., Adelstein, J., Boyle, H., Hayden, B. Hammond, T. Fletcher, D. Narang, A. Kimber, L. Mitchell, G. Rich. 2005. Performance parameters for grid-connected pv systems. In: Conference Record of the Thirtyfirst IEEE Photovoltaic Specialists Conference, 2005, pp. 1601–1606.
Parker, D. 2011. Estimating uncertainty in the projected annual energy yield of a photovoltaics. Report: JPV-2011-07-0052-R.
Podewills, C., 2011. Las perspectivas son buenas. El laboratório de Photon ha examinado programas para la estimacíon del rendimento. Revista PHOTON, p.46-49.
Reindl, D. T. 1988. Estimating diffuse radiation on horizontal surfaces and total radiation on tilted surfaces, M.S.
Thesis, University of Wisconsin-Madison, Madison, WI. Solar and Wind Energy Resource Assessment (SWERA). Disponível em http://en.openei.org/apps/SWERA/.
Schnitzer, M.; Thuman, C.; Johnson, P.; Freeman, J. 2012. Solar Input Data for PV Performance Modeling. AWS Truepower, LLC.
Thevenard, D., Pelland, S. 2013.Estimating the uncertainty in long-term photovoltaic yield predictions. Solar Energy, Vol. 91, pp. 432-445.
Yates, T., Hibberd, B. 2010. Production modeling for grid-tied pv systems. SOLARPRO. April/May 30-56.
Zilles, R.; Macêdo, W.; Galhardo, M.; Oliveira, S. 2012. Sistemas fotovoltaicos conectados à rede elétrica – Oficina de Idéias, São Paulo - SP.