STATE OF THE ART OF METHODS FOR THE CHARACTERIZATION OF PHOTOVOLTAIC MODULES AND ARRAYS
DOI:
https://doi.org/10.59627/cbens.2016.1457Keywords:
Modules and Photovoltaic Arrays, characterization methods, I-V curvesAbstract
The characteristic curve current x voltage (I-V) from PV modules must be continuously monitored for various reasons. One of these reasons is to determine the maximum power point operation (MPP) in actual operating conditions and, by extrapolation, verify that the installed power rating corresponds to the specifications agreed in the contract. Moreover, such information can be used as maintenance tools and unconformities detection / faults in the system. Currently, the state of the art presents various traditional methods of characterization curves I-V with different implementations. This paper makes a short, objectively, the technical characteristics of the methods and topologies of traditional circuits commonly used to perform the characterization of photovoltaic modules and arrays.
Downloads
References
Bias, M. A., Torres , J. L., Prieto , E., Garcia, A., 2002, Selecting a suitable model for characterizing photovoltaic devices", Renewable Energy, 25, pp. 371-380.
Buiatti, G. 2009. Method and apparatus for obtaining information enabling the determination of the maximum power point of a power source. EPO 09 165145.5 (Depositada em 10 de Julho de 2009).
Buiatti, G., 2012. Apparatus for obtaining information enabling the determination of the maximum power point of a power source. US20120139504 A1 (Requerimento em 7 de Junho de 2012).
Buiatti 1, G., 2012. Apparatus for controlling the current going through an inductor of an energy conversion device. EP2515423 A1 (Requerimento em 24 de Outubro de 2012).
Buiatti, G., 2015. Method for obtaining information enabling the determination of a characteristic of a power source. US9086716 B2 (Concedido em 21 de Julho de 2015).
Blaesser, G., Munro, D., 1995. Guidelines for the Assessment of Photovoltaic Photovoltaic Plants. Document C. Initial and Periodic Tests on PV plants. Joint Research Centre Ispra. European Commission.
Fernandez-Reche, J., Canadas, I., 2006. PSA Solar furnace, A facility for testing PV cells under concentrated solar radiation, Solar Energy Materials & Solar Cells, 90, pp. 2480-2488
Forero N., J. Hernandez, Gordillo G., 2006. Development of a monitoring system for a PV solar plant, Energy Conversion & Management, 47, pp. 2329-2336.
Guvench, M. G., Gurcan , C., Durgin, K., MacDonald , D., 2004. Solar simulator and I-V measurement system for large area solar cell testing, in Proceedings of the American Society for Engineering Education Annual Conference & Exposition, pp. 12747–12753.
Hecktheuer, L.A., Krenzinger, A., Prieb, C.w.M., 2002. Methodology for photovoltaic modules characterization and shading effects analysis; Journal of the Brazilian Society of Mechanical Sciences, 24(1).
IEC 60904, 2006. International Standard-60904-1. Photovoltaic Devices. Part 1: Measurements of Photovoltaic Current–Voltage Characteristics. International Electrotechnical Commission.
IEC 61829, 2015. International Standard 61829. Photovoltaic (PV) array – On-site measurement of current-voltage characteristics.
Kuai Y., Yuvarajan S., 2006. An electronic load for testing photovoltaic panels, Journal of Power Sources, 154, 2006, pp. 308-313.
Mahmoud, M.M., 2006. Transient analysis of a PV power generator charging a capacitor for measurement of the I-V characteristics, Renewable Energy, 31, pp. 2198-2206.
Malik, A.Q., Damit, S.J. Bin Haji, 2003. Outdoor testing of single crystal silicon solar cells, Renewable Energy, 28, pp. 1433-1445
Mitsubishi Electric Corporation, JP. Buiatti, G. Method for obtaining information enabling the determination of a characteristic of a power source. FR. US 2012/0235665 A1. Sep. 20, 2012
Muñoz J., Lorenzo E., 2006. Capacitive load based on IGBTs for on-site characterization of PV arrays, Solar Energy, pp. 1489-1497.
Neuenstein, H., Albers, K., 2004. On-site power checks. Photon International (Maio), 70–74.
Recart F., Mäckel H., et aI., 2006. Simple data acquisition of the current-voltage and illumination-voltage curves of solar cells, IEEE WCPEC, pp. 1215-1218.
Sahbel, A. Hassan, N. et. al, 2013. Experimental Performance Characterization of Photovoltaic Modules Using DAQ. TerraGreen 13 International Conference 2013 - Advancements in Renewable Energy and Clean Environment. Solmetric Corporation, 2011. Guide to Interpreting I-V Curve Measurements of PV Arrays, Application Note PVA-600-1, Disponível em http://resources.solmetric.com/get/Guide%20to%20Interpreting%20I-V%20Curves.pdf, Acesso: Novembro, 2015.
Van Dyk, E.E., Gxasheka, Meyer A.R., E.L., 2002. Monitoring current-voltage characteristics of photovoltaic modules", IEEE PVSC, pp. 1516-1519.
Van Dyk, E.E., Gxasheka, Meyer A.R., E.L., 2005. Monitoring current-voltage characteristics and energy output of silicon photovoltaic modules, Renewable Energy, 30, pp. 399-411.
Willoughby, A.A., Omotosho, T.V., Aizebeokhai, A.P., 2014. A simple resistive load I-V curve tracer for monitoring photovoltaic module characteristics. Renewable Energy Congress (IREC), 2014 5th International, vol., no., pp.1-6, 25-27.
Zimmerman, U., Edoff, M., 2012. A maximum power point tracker for long-term logging of PV module performance. IEEE Journal of Photovoltaics, vol. 2, no 1, pp. 47-55.