MATHEMATICAL MODEL FOR SLI BATTERIES IN STAND-ALONE PHOTOVOLTAIC SYSTEMS

Authors

  • Luis H. Vera Universidad Nacional del Nordeste
  • Arno Krenzinger Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.59627/cbens.2008.1532

Keywords:

Systems Autonomous Photovoltaic, SLI Batteries, Mathematical Model

Abstract

Many Latin-American countries with a significant amount of the population living in rural zones, without access the electric power and basic social service, find in the photovoltaic technology a way for human and productive development. The stand-alone photovoltaic systems (SAPS) use, in general, motor vehicle starting, lighting and ignition (SLI) batteries as a way of storage energy. These batteries make an electric match with the photovoltaic generator through their voltage, setting its working point. Predict the behavior of the accumulation system has great importance because its performance affects the reliability of SAPS. With the objective to study and to predict the behavior of batteries in SAPS, the Solar Energy Laboratory at UFRGS developed a batteries test system, where real conditions of operation can be reproduced under controlled conditions. This work presents experimental analysis that allowed, with theory studies, to obtain algorithms to determine the voltage of lead-acid batteries in different operation conditions. The algorithms, implemented in mathematical models, were incorporated into a software that simulates the behavior of SAPS. Results obtained through the application of these algorithms were compared with values acquired in a battery test system, and showed maximum deviation about 6%, that was considered appropriate for an hourly time basis simulation.

Downloads

Author Biographies

Luis H. Vera, Universidad Nacional del Nordeste

Departamento de Ingeniaría Mecánica, Universidad Nacional del Nordeste.
Pós-Graduação de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul.

 

Arno Krenzinger, Universidade Federal do Rio Grande do Sul

Pós-Graduação de Engenharia Mecânica, Universidade Federal do Rio Grande do Sul.

References

Armenta-Deu C., 2003. Prediction of battery behavior in SAPV applications. Renewable Energy, 28(11), pp 1671-1684.

Benchetrite, D., Le Gall, M., Bach, O., Perrin, M., Mattera F., 2005. Optimization of charge parameters for lead–acid batteries used in photovoltaic systems. Journal of Power Sources, 144, pp 346-351.

Copetti, J. B. ; Maccagnan, M. H., 2007.Baterias em sistemas solares fotovoltaicos. I CBENS - I Congresso Brasileiro de Energia Solar, Fortaleza - CE.

Copetti, J., Lorenzo, E. E Chenlo, F. A., 1993. General Battery Model for PV System Simulation. Progress in Photovoltaics, 1(4): pp 283-292.

Díaz P., Muñoz J., 2001. SHS battery modelling: Definition, tests and validation. 17th Photovoltaic Solar Energy Conference, Munich, pp. 619-622.

Gu W. B., Wang G. Q. and Wang C. Y. 2002 Modeling the overcharge process of VRLA batteries. Journal of Power Sources, Volume 108, Issues 1-2, Pages 174-184.

Kaldellis, J. K., Koronakis P., Kavadias, K., 2004. Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact. Renewable Energy, 29(7), pp 1161-1180

Lasnier, F. ; Gag Ang, T., 1990. Photovoltaic Engineering Handbook.Adam Hilger Linden, A, 1995. Batteries Handbook. Wiley and Sons. Philadelphia EUA.

Moura, J.F.C. Caracterização de Baterias Automotivas para Uso Sola r Fotovoltaico. Dissertação de Mestrado, PROMEC/UFRGS, Porto Alegre RS, 1996.

Norma NBR 6581 (1989): Bateria Chumbo-ácido de partida – Verificação das características elétricas e mecânicas.

Oliveira, L.G.M., 2005. Estarategia de Controle de Carga d Descarga em Sistemas Fotovoltaicos Domiciliares. Dissertação de Mestrado, Universidade de São Paulo, Brasil.

PVSyst, programa computacional para dime nsionamento e simulação de sistemas fotovoltaicos, University of Geneva. Disponivel em: <http://www.pvsyst.com> Acesso em: 08 Set. 2007.

Ross, J. N., Markvart, T., He, W., 2000. Modelling battery charge regulation for a stand-alone photovoltaic system. Solar Energy, 69(3), pp 181-190.

Salameh Z., Casacca A, Lynch W., 1992. A mathematical model for lead-acid batteries. Transaction on Energy Conversion, IEEE, Volume: 7, pp 93-98

Shepherd C. M., 1965. Design of Primary and Secondary Cells. J. Electrochem. Soc. 112, 657.

Silvestre, S., Guasch, D., Goethe, U., Castañer, L., 2001. Improved PV battery modelling using Matlab.17th European Photovoltaic Solar Energy Conference, Munich, pp. 609-612.

Tolmasquim M., 2004. Alternativas Energéticas Sustentáveis no Brasil”, Relume Dumará, Rio de Janeiro, Brasil.

Vasebi, A., Partovibakhsh, M., Mohammad, S., Bathaee, T., 2007 A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid electric vehicle applications. Journal of Power Sources, In Press.

Vela N, Chenlo C., 2004. Comportamento não repetitivo de baterias In: XII Congreso IBÉRICO e VII Congreso Iberoamericano de Energia Solar, Vigo (Espanha), v. 2. p. 819-824.

Vera, L.H., 2004. “Programa para Dimensionamento e Simulação de Sistemas Fotovoltaicos Autônomos”. Dissertação de Mestrado, Universidade Federal do Rio Grande do Sul, Brasil.

Vera, L. H.; Krenzinger, A., 2008. Resultados Simulados e Medidos em em Sistema Fotovoltaico Autônomo. Trabalho aceito para sua publicação no XXXI Congreso de ASADES y XVII Reunión de la IASEE. Mendoza, Argentina.

Vera, L. H.; Krenzinger, A. , 2007. Comportamento de ba terias automotivas seladas sob diferentes condições de operação. Avances en Energías Renovables y Medio Ambiente, v. 11, p. 04.33-04.40.

Published

2008-11-10

How to Cite

Vera, L. H., & Krenzinger, A. (2008). MATHEMATICAL MODEL FOR SLI BATTERIES IN STAND-ALONE PHOTOVOLTAIC SYSTEMS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2008.1532

Issue

Section

Anais