STUDY LOCATION OF SOLAR THERMAL POWER STATIONS OF LARGE SIZE IN NORTHEASTERN SEMI-ARID
FUNDAMENTALS AND METHODOLOGY
DOI:
https://doi.org/10.59627/cbens.2010.1537Keywords:
Solar Energy, Solar Thermoelectric Plants, Geographic Information SystemAbstract
With growing concern to produce electricity from renewable energy, the thermal solar electricity generation has repercussions in many countries, such as Spain, Portugal and Germany. In Brazil, this generation of energy in large projects (above 80MW), is still not carried out. However, it is known that the country has large areas with availability of direct solar radiation normal (one of the main parameters for the installation of solar power plants) in the Northeast of Brazil, specifically in the semiarid region, which has also other important variables for the installation of these plants, such as: great topographical conditions, low wind speed, low population density and lands that are not used for agriculture, for example. Furthermore, the introduction of solar power plants in the region will provide several benefits such as growth and development of a region, the implementation of social benefits and job creation. By means of a Geographic Information System (GIS) all important variables in the location of a solar power plant are represented as spatial data and, when modeled, allow to indicate the places suitable for installation of these plants. The GIS has resource to manipulate spatial data, providing fast and efficient identification of suitable places for installing solar plants while establishing future scenarios for energy planning, with their respective impacts, costs and benefits. This paper shows some fundamentals study of the best localization of solar thermoelectric central in Brazilian semi- arid, in scale 1:10.000.000. The tools of GIS (Geographic Information System) are presented and the localization will be defined with different information planes that are important in this case like: soil, direct normal solar radiation (annual average daily value), water, topography, etc. Maps algebra of information plane is used to define the best localization.
Downloads
References
ASA Articulação no Semi-Árido Brasileiro. 2008. <http://www.asabrasil.org.br> Acesso em dezembro.
Barbosa, C. C. F. 1997. Álgebra de Mapas e suas Aplicações em Sensoriamento Remoto e Geoprocessamento. Dissertação de Mestrado, INPE, São José dos Campos.
Broesamle, H., Mannstein, H., Schillings, C., Trieb, F. 2001. Assessment of Solar Electricity Potentials in North Africa based on Satellite Data and a Geographic Information System. Solar Energy, v. 70, n. 1, pp. 1-12.
Burrough, P.A., Mcdonnel, R. A. 1998. Principles of Geographical Information Systems. Oxford, Clarendon Press, 2ª edição, 311p, 1998.
Coelho, G. B. 2006. Analise e simulação do processo em transformação de chuva em vazão com suporte de sistemas de informações geográficas. Dissertação de Mestrado, PPGCGTG, UFPE, Recife.
Cunha, J. G. D. 2006. O Uso de Tecnologias da Geoinformação no Apoio às Ações Estruturais de Redução de Riscos em encosta. Dissertação de Mestrado, PPGCGTG, UFPE, Recife.
Dahle, D., Elliott, D., Heimiller, D.. Mehos, M., Robichaud, R., Schwartz, M., Stafford, B., Walker, A. 2008. descriptions of renewable energy Technologies. In: National Renewable Energy Laboratory (NREL). Assessing the Potential for Renewable Energy Development on DOE Legacy Management Lands.
Goodchild, M. F.; Haining, R. P. GIS and spatial data analysis: covering perspectives. Papers in Regional Science, v. 83, p. 363-385, 2004.
Kelly, B., 2006. Nexant Parabolic Trough Solar Power Plant Systems Analysis, Task 2: Comparison of Wet and Dry Rankine Cycle Heat Rejection, NREL/SR-550-40163.
Price, H. W. 1999. Parabolic Trough Solar Power for Competitive U.S. Markets. ASME Renewable and Advanced Energy Systems for the 21st Conference. Maui, Hawai.
Rabl, A. 1985. Active solar collectors and their applications, Oxford University Press, Oxford.
Rolim, M. M. 2007. Modelagem Analítica de Geração Solar Térmica de Eletricidade com Concentradores Parabólicos de Foco Linear. Tese de Doutorado, PROTEN, UFPE, Recife.
Rolim, M. M., Fraidenraich, N., Tiba, C. 2009. Analytic modeling of a solar power plant with parabolic linear collectors. Solar Energy, v. 83, n. 1, pp. 126-133.
Solar Trough. 2008. <http://www.solarpaces.org/CSP_Technology/docs/solar_trough.pdf> Acesso em novembro.
Tiba, C., Fraidenhaich, N., Barbosa, E. M. S. B., Candeias, A. L. B., Neto, P. B. C., Filho, J. B. M. 2008. SIGA SOL 1.0 (Sistema de Informação Geográfica Aplicada à Energia Solar). Parte I: Descrição geral e metodologia. II Congresso Brasileiro de Energia Solar e III Conferência Regional Latino-Americana da ISES. Florianópolis.
Tiba, C., Fraidenhaich, N., Moskowicz, M., Cavalcanti, E. S. C., Lyra, F. J. M., Nogueira, A. M. B. 2001. Atlas Solarimétrico do Brasil - Banco de dados Terrestres. Editora Universitária de Pernambuco, ISBN 85-7315-142-0, Recife.
Tomlin, c. d, 1990. Geographic Information System and Cartographic modeling. New Jersey: Prentice-Hall. Jonh wiley e sons.