ANALYSIS OF THE ATTENUATION OF THE HOURLY GLOBAL, DIRECT AND DIFFUSE SOLAR RADIATIONS IN FUNCTION OF THE OPTICS MASS
DOI:
https://doi.org/10.59627/cbens.2010.1683Keywords:
Solar Energy, Atmospheric Attenuation, ScatteringAbstract
The objective of this work is to verify the atmospheric attenuation by means of the relationship between global solar radiation, direct and diffuse with optical mass. The optical mass depends on locality and changes in time, with direct influence on the radiative flux, causing changes in average values. The measurements of solar radiation were provided by the Laboratory of Radiometry of Botucatu, UNESP - Botucatu / SP (22.9 º S latitude, 48.45 ° W longitude, 745 m elevation). The period used included the years 2002 to 2006. The solar radiation was measured by a Eppley pyranometer model PSP. The direct solar radiation on the incidence was measured using a model pirheliometer Eppely NIP coupled to a solar tracking system model ST-3. The diffuse solar radiation was calculated by the difference between global and direct solar radiation horizontal. There was a decrease in solar radiation with increasing opthical mass, justified by the increased probability of collision of the solar rays with atmospheric constituents. For global radiation and optical mass mo = 1, a minimum around 3.1 MJ/m2 and maximum 4.1 MJ/m2. For optical mass mo = 2, minimum 1.5 MJ/m2, maximum 1.9 MJ/m2. For direct radiation, minimum 2 MJ/m2 and maximum 3.75 MJ/m2. For optical mass mo = 2, minimum 1 MJ/m2 and maximum 1.5 MJ/m2. For diffuse radiation, minimum 0.1 MJ/m2 and maximum 1.5 MJ/m2. For optical mass mo = 2, minimum 0.1 MJ/m2, maximum 0.8 MJ/m2. The combination of direct and diffuse radiation data allowed better understand of the attenuation process.
Downloads
References
ANDREAE, M.O. Climatic effects of changing atmospheric aerossol levels ch10. In World Survey of Climatology, vol. 16, Future Climates of the World, edited by A. Henderson-Sellers, p. 341-392, Elsevier, New York, 1995.
Andreae, M.O., Artaxo, P., Fischer, H., Freitas, S.R., Gregoire, J.M., Hansel, A., Hoor, P., Kormann, R., Krejci, R., Lange, L., Lelieveld, J., Lindinger, W., Longo, K., Peters, W., de Reus, M., Scheeren, B., Dias, M.A.F.S., Strom, J., van Velthoven, P.F.J., Williams, J., Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region Geophysical Research Letters 28 (6): 951-954, MAR 15, 2001.
Case, M. "Climate change impacts in the Amazon: review of scientific literature (World Wildlife Fund – WWF)". 8th Conference of the Parties to the Convention on Biological Diversity. 20-31 March, Curitiba, Brazil. 2006
CODATO, G.; OLIVEIRA, A.P.; SOARES, J.; ESCOBEDO, J.F.; GOMES, E.N.; DAL PAI, A. Global and diffuse solar irradiances in urban and rural áreas in Southeast Brazil. Theoretical and Applied Climatology, v.93, n.1, p.57-73, 2008.
DAL PAI, Alexandre ; ESCOBEDO, João Francisco . Correlação entre anisotropia da radiação solar difusa e transmissividade atmosférica, razão de insolação e profundidade ótica de aerossol. In: II Congresso de Energia Solar, 2008, Florianópolis. II Congresso Brasileiro de Energia Solar - CD Rom, 2008.
DAL PAI, Alexandre ; ESCOBEDO, João Francisco . Modelo de estimativa anisotrópica da radiação solar difusa nas particões de tempo horária, diária e mensal. In: I Congresso Brasileiro de Energia Solar - ICBENS, 2007, Fortaleza/CE. I Congresso Brasileiro de Energia Solar - ICBENS - CD Rom, 2007.
Freitas, S.R., Dias, M.A.F.S., Dias, P.L.S., Longo, K.M., Artaxo, P., Andreae, M.O., Fischer, H., A convective kinematic trajectory technique for low-resolution atmospheric models Journal of Geophysical Research- Atmospheres 105 (D19): 24375-24386 OCT 16, 2000. 213
Freitas, S.R., Longo, K.M., Dias, M.A.F.S., Dias, P.L.S., Chatfield, R., Prins, E., Artaxo, P., Grell, G.A., Recuero, F.S.; Monitoring the transport of biomass burning emissions in South America.Environmental Fluid Mechanics 5 (1-2): 135-167 2005.
GONÇALVES, F.L.T., A.R. MALHEIROS, R.S. FREITAS, M.A.F. ASSUNÇÃO, O. MASSAMBANI. In-cloud and below-cloud numerical simulation of scavenging processes at Serra do Mar region, SE Brazil. Atmospheric Environment, vol. 36, p. 5245-5255, 2002.
Goody, R. M.; Yung, Y. L. Atmospheric Radiation – Theoretical Basis. Oxford University Press, New York, 1989.
Hare, W. "Assessment of knowledge on impacts of climate change contribution to the specification of art. 2 of the UNFCCC". WBGU Potsdam, Berlin.2003.
HAYWOOD, J., O. BOUCHER. Estimates of the direct and indirect radiative forcing due totropospheric aerosols: a review. Reviews of Geophysics, vol. 38, p. 513-543, nov 2000.
Intergovernmental Panel on Climate Change (IPCC): Climate change, Third Assessment Report, Scientific Basis, 2001.
Kaufman, Y. J., Tanre, D. e Boucher, O.: A satellite view of aerosols in the climate system, Nature, 419, 6903, 215-223, 2002.
LEAL, T.F.M., A.P.G. FONTENELE , J. PEDROTTI, A.FORNARO. Composição iônica majoritária de águas de chuva no centro da cidade de São Paulo. Quimica Nova, vol. 27(6), p. 855-861, 2004.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmospheric Chemistry and Physics, 5, 715-737, 2005.
MACCHIONE, M. (1999). São Paulo. Dissertação de Doutorado. Instituto de Química da Universidade de São Paulo.
Michelozzi, P; Forastiere, F.; Fusco, D.; Perucci, C. A.; Ostro, B.; Ancona, C.; Pallotti, G. Air pollution and daily mortality in Rome, Italy. Occup. Environ. Med., v. 55, p. 605-610, 1998.
Miles, L.; Grainger, A. and Phillips, O.L. "The impact of global climate change on tropical forest biodiversity in Amazonia". Global Ecology and Biogeography 13: 553-565.2004.
PAIVA, R.P., M.A.F. PIRES, C.S. MUNITA, M.F. ANDRADE, F.L.T. GONÇALVES, O. MASSAMBANI. A preliminary study of the anthropogenic contribution to SãoPaulo rainfall. Fresenius, vol. 6(9-10), p. 508-513, 1997
Penner, J.E., M.O. Andreae, H.J. Annegarn, L.A. Barrie, J. Feichter, D.A. Hegg, A. Jayaraman, R. Leaitch, D.M. Murphy, J. Nganga, and G. Pitari: Chapter 5: Aerosols, their direct and indirect effects. In: IPCC Climate Change 2001: The scientific basis [J.T. Houghton (ed.). Cambridge University Press, Cambridge,U.K., 2001.
Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D. Aerosols, Climate and the Hydrological Cycle. Science Compass Review., v. 294, p. 2119-2124, 2001.
RAMANATHAN, V., P. J. CRUTZEN, J. T. KIEHL, D. ROSENFELD. Aerosols, Climate, and the Hydrological Cycle. Science Compass Review., vol. 294, p. 2119-2124, 2001.
Roberts, G; Artaxo, P.; Zhou, J.; Swietlicki, E.; Andreae, M. O. Sensitivity of CCN spectra on chemical and physical properties of aerosols: a case study from the Amazon Basin. Journal of Geophysical Research, v. 107, 2002.
Sala, O.E. et.al. "Global biodiversity scenarios for the year 2100". Science 287:1770-1774. 2000.
SALDIVA, P.H.N., KING, M., DELMONTE, V.L.C., MACCHIONE, M., PARADA, M.A.C., DALIBERTO, M.L., SAKAE, R.S., CRIADO, P.M.P., SILVEIRA, P.L.P., ZIN, W.A., BOM, G.M. (1992). Respiratory Alterations due to urban air pollution: an experimental study in rats. Environmental Research, Vol.57, p.19- 33.
SCHMID, B. E C. WEHRLI. Comparison of Sun photometer calibration by use of the Langley technique and the standard lamp. Applied Optics, vol. 34, p. 4500-4512, 1995.
SEINFELD, J.H., PANDIS, S.N. (1998). Atmospheric Chemistry and Phisics from Air Pollution to Climate Change. Wiley, New York, U.S.A.
SUEHRCKE, H., McCORMICK, P. G. The distribution of average instantaneous terrestrial solar radiation over the day. Solar Energy, v.42, n. 4, p 303-309, 1989.
Thomas, C.D. et.al. "Extinction risk from climate change". Nature, 427 (6970). pp. 145-148.2004.
WALLACE, J.M. E P.V. HOBBS. Atmospheric Science – An Introductory Survey. Academic Press, Inc. San Diego, Califórnia, 1977.
YAMASOE, M.A. Estudo de Propriedades Ópticas de Partículas de Aerossóis a partir de uma Rede de Fotômetros. São Paulo. Tese de Doutorado. Instituto de Física, USP, 1999.