METHOD FOR CALCULATION OF UNCERTAINTY PROPAGATION IN ESTIMATE POWER GENERATION FOR PHOTOVOLTAIC SYSTEMS

Authors

  • Thales José Rodrigues Corrade Universidade Federal de Minas Gerais (UFMG)
  • Luís Guilherme Monteiro Oliveira Universidade Federal de Minas Gerais (UFMG)
  • Renato Diniz Werneck Ceolin Universidade Federal de Minas Gerais (UFMG)
  • Alexandre Schichman Piterman Universidade Federal de Minas Gerais (UFMG)
  • Wallace do Couto Boaventura Universidade Federal de Minas Gerais (UFMG)
  • Victor Flores Mendes Universidade Federal de Minas Gerais (UFMG)
  • Eduardo Nohme Cardoso Universidade Federal de Minas Gerais (UFMG)
  • Wilson Negrão Macêdo Universidade Federal do Pará (UFPA)
  • Gustavo Malagoli Buiatti ALSOL Energias Renováveis S/A
  • Alex Vilarindo Menezes Universidade Federal do Tocantins
  • Bruno Marciano Lopes Companhia Energética de Minas Gerais (CEMIG)

DOI:

https://doi.org/10.59627/cbens.2016.1793

Keywords:

Uncertainty propagation, Generation estimate, Photovoltaics systems.

Abstract

In recent years, the photovoltaic market in Brazil is maturing and thus, investment growth in the sector and consequently large solar power plants projects or through distributed generation. So increasingly, investor confidence will depend on the energy forecast generated by these photovoltaic systems particularly in performance contracts. Thus, for the realization of the same, a sequence of energy conversion and insertion of parameters is required in a process of mathematical modeling of the system, and each of these are related to a particular type uncertainty. The uncertainties in these models, increase from several sources and consequently, these uncertainties contribute to the overall uncertainty in predicting the system power production. Therefore, in this work, uncertainties are identified, described and quantified by a simple statistical method however, consistently, to calculate the propagation of uncertainty in power generation. This method was implement in MATLAB © and applied to a two micro PV generators installed in different locations.

Downloads

Author Biographies

Thales José Rodrigues Corrade, Universidade Federal de Minas Gerais (UFMG)

 Departamento de Engenharia Elétrica

Luís Guilherme Monteiro Oliveira, Universidade Federal de Minas Gerais (UFMG)

 Departamento de Engenharia Elétrica

Renato Diniz Werneck Ceolin, Universidade Federal de Minas Gerais (UFMG)

Departamento de Engenharia Elétrica

Alexandre Schichman Piterman, Universidade Federal de Minas Gerais (UFMG)

 Departamento de Engenharia Elétrica

Wallace do Couto Boaventura, Universidade Federal de Minas Gerais (UFMG)

 Departamento de Engenharia Elétrica

Victor Flores Mendes, Universidade Federal de Minas Gerais (UFMG)

Departamento de Engenharia Elétrica

Eduardo Nohme Cardoso, Universidade Federal de Minas Gerais (UFMG)

Departamento de Engenharia Elétrica

Wilson Negrão Macêdo, Universidade Federal do Pará (UFPA)

Instituto de Tecnologia

Alex Vilarindo Menezes, Universidade Federal do Tocantins

Departamento de Engenharia Elétrica

Bruno Marciano Lopes, Companhia Energética de Minas Gerais (CEMIG)

 Gerência de Alternativas Energéticas

References

Baumgartner, H. Schmidt, B. Burger, R. Brundlinger, H. Haberlin, Zehner, M. 2007. Status and Relevance of the DC Voltage Dependency of the Inverter Efficiency. In: EU PVSEC 2007, Milão, pp. 2499 – 2505.

Buiatti, G. M. 2013. Inovações no marketing para pequenas empresas – Selo Solar para PGM Sistemas. In: Renex South America – Feira Internacional de Energias Renováveis.

Catthor, F.; Anagnostos, D. 2014. What – if experimental validation and extended framework: A system scenario approach. WP1 – Deliverable D1.3.

David, M.; Laurent, P., Boland, J. 2013. Evaluating tilted plane models for solar radiation using

comprehensive testing procedures, at a southern hemisphere location. Renewable Energy vol. 79, n. 51, p. 124-131.

De Soto, W.; Klein, A.; Beckman, W. A. 2006. Improvement and Validation of Model for Photovoltaic Array Performance. Solar Energy, v. 80, 78.

Gueymard, C. 2009. Direct and indirect uncertainties in the prediction of tilted irradiance for solar engineering applications Solar Energy, Vol. 83, No. 5, pp. 432-444.

Hansen, C.; Pohl, A.; Jordan, D. 2013. Uncertainty and Sensitivity Analysis for Photovoltaic System

Modeling. Sandia Report – SAND2013-10358, Sandia National Laboratories, EUA, p.60.

International Standard Organization (ISO/IEC), 2008. Guide 98-3:2008 – uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement, pp. 1–28.

Joint Committee for Guides in Metrology (JCGM), 2010. “Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement,” Joint Committee for Guides in Metrology (JCGM).

Jordan, D. C.; Kurtz S. R. 2012. Photovoltaic degradation rates—an analytical review, Progress in Photovoltaics. Res. Appl., vol. 21, no. 1, pp. 12–29.

King, D. L.; Boyson, W.E.; Kratochvil, J. E. 2004.Photovoltaic Array Performance Model. Sandia National Laboratories Report SAND2004-35353, Agosto.

Laukamp, H., Schoen, T., Ruoss, D.2002. Reliability Study of Grid Connected PV Systems, Field Experience and Recommended Design Practice. IEA PV Power Systems Programme, Report IEA-PVPS T7-08.

Marion, W. F., B. Kroposki, K. Emery, J. Del Cueto, D. Myers, and C. Osterwald. 1999. Validation of photovoltaic module energy ratings procedure at NREL. National Renewable Energy Laboratory, Golden.

Martinez-Moreno, F..; Lorenzo, E..; Navarte, L.; Moretón, R.; Tyutyundzhiev, N.; Parra, I. 2015. Technical Specifications and Quality Control Procedures For Reducing The Uncertainty in PV Installations: Results of the FP7 Project PVCrops. In: 30th EU PVSEC, Hamburg, Germany. pp. 2217 – 3260.

Menezes, A.; Macêdo, W. N.; Kochi, J.; Resende, D. 2016. Análise de operação do primeiro ano de um sistema fotovoltaico conectado à rede de 21,75 kWp na cidade de Palmas-TO segundo a Resolução 482/2012 da ANEEL. In: VI CBENS, Belo Horizonte.

Mermoud, A.; T. Lejeune. 2010. Performance Assessment of a simulation model for PV modules of any available technology, In: 25th European Photovoltaic Solar Energy Conference. Valencia, Spain.

Müller, B; Hardt, L.; Armbruster, A.; Kiefer, K. Reise, C. 2014. Yield Predictions For Photovoltaic Power Plants: Empirical Validation, Recent Advances And Remaining Uncertainties. In: 29th European PV Solar Energy Conference and Exhibition - EU PVSEC, Amsterdam, Netherlands. pp. 2499 – 2505.

Pereira, E., Martins, F. Abreu, S.; Ruther, R. 2006. Atlas Brasileiro de Energia Solar. Instituto Nacional de Pesquisas Espaciais, São José dos Campos / SP.

Richter, M., De Brabandere, K., Kalisch, J., Schmidt, T., E. Lorenz, 2015. “Best Practice Guide on Uncertainty in PV Modelling”, Performance Plus WP2 Deliverable D2.4.

Schniter, M.; Thuman, C.; Johnson, P.; 2012. Reducing Uncertainty in Solar Energy Estimates – Mitigating Energy Risk Through On-Site Monitoring. AWS True Power report, Albany, New York.

Sǔri, M., Hund, T.; Dunlop, E; Albuisson, M. 2007. Uncertainties in photovoltaic electricity yield prediction from fluctuation of solar radiation. In: 22nd EU PVSEC, Milan, Italy. pp. 2217 – 3260.

Thevenard, D., Pelland, S. 2013.Estimating the Uncertainty in Long-Term Photovoltaic Yield Predictions. Solar Energy, Vol. 91, pp. 432-445.

World Meteorological Organization, 2008. Guide to meteorological instruments and methods of Observation. Geneva, Switzerland: World Meteorological Organization.

Published

2016-12-13

How to Cite

Corrade, T. J. R., Oliveira, L. G. M., Ceolin, R. D. W., Piterman, A. S., Boaventura, W. do C., Mendes, V. F., Cardoso, E. N., Macêdo, W. N., Buiatti, G. M., Menezes, A. V., & Lopes, B. M. (2016). METHOD FOR CALCULATION OF UNCERTAINTY PROPAGATION IN ESTIMATE POWER GENERATION FOR PHOTOVOLTAIC SYSTEMS. Anais Congresso Brasileiro De Energia Solar - CBENS, 1–8. https://doi.org/10.59627/cbens.2016.1793

Issue

Section

Anais