GLOBAL SOLAR IRRADIATION AVERAGE MONTHLY HOURS (Hgh) WITH EMPIRICAL MODELS BASED ON AIR TEMPERATURE FOR MACEIÓ AND CORURIPE / ALAGOAS – BRAZIL
DOI:
https://doi.org/10.59627/cbens.2012.1871Keywords:
Global Solar irradiation hourly average monthly, Empirical Models, ModelingAbstract
In this study four empirical models, with the maximum and minimum air temperature as input variable, are adjusted to estimate the average hourly global solar irradiation monthly (Hgh) in the regions of Maceió (10°01’29,1”S, 36°16'29,1” W, 127m) and Coruripe (9°28’29,1”S, 35°49’43,6” W and 108.7 m). In the validation of the models were used meteorological data (air temperature) and solarimetric (Hgh) obtained in the period 2007 to 2009. The average hourly global solar irradiation estimated monthly (Hgeh) from the models were compared with values Hgh using statistical indicators: average deviations (med), population standard deviation of deviations (dpp), index of agreement of Willmott (d ) and t-test statistic. The adjusted coefficients were shown to be dependent on the region and the month in study. The coefficient β1 the models 1 (Hargreaves & Samani, 1982) and 2 (Annandale et al., 2002) showed the same pattern monthly in both regions. The coefficients β1 and β2 of the models 3 (Hargreaves et al., 1985) and 4 (Hunt et al., 1998) did not present month. For the Maceió’s region best estimate was obtained with model 1, indicating "d" ranging from 0,88 to 0,99, showing no significant difference at 1%. In the Coruripe’s region the model 3 was the best we estimated Hgh, with dpp ranging from 0,11 to 0,42 MJm-2. These results show the efficiency of empirical models to estimate Hgh.
Downloads
References
Allen, R., 1995. Evaluation of procedures of estimating mean solar radiation from air temperature, FAO, Rome.
Allen, R; Pereira, L. S.; Raes, D.; Smith, M., 1998. Crop evapotranspiration-Guildelines for Computing Crop Water Requirements – FAO, Irrigation And Drainage Paper 56, Food and Agriculture Organization of the United Nations, Rome, 300p.
Almorox, J; Benito, M.; Hontoria, C., 2005. Estimation of monthly Ångström – Prescott equation coefficients from measured daily data in Toledo, Spain, Renewable Energy, v. 30, p. 931 – 936.
Annandale, J.G.; Jovanic, N. Z.; Benade, N.; Allen, R.G., 2002. Software for missing data error analysis of Penman–Monteith reference evapotranspiration, Irrigation Science, v.21, p.57–67.
Ceballos, J. C.; Rodrigues, M. L.; Oliveira, L. M., 2010. Desempenho do modelo GL versão 1,2 época: Outubro 2010 – Dezembro 2010, Relatório Técnico 01/11 - RST-DSA.
Chen, R.; Ersi, K,; Yang, J.; Lu, S.; Zhao, W., 2004. Validation of five models with measured daily data in China, Energy Conversion and Management, v.45, v.1759 – 1769.
David, M. L; Berenson, M. L.; Stephan, D., 2008. Estatística: Teoria e Aplicações, Editora LTC, 5 ° edição, Tradução Teresa Cristina Padilha de Souza, - [Reimpr.] – Rio de Janeiro, LTC, 2011, 752 páginas, + CD-ROM.
Hargreaves, G.L.; Hargreaves, G.H; Riley, J.P., 1985. Irrigation water requirement for Senegal River Basin, Journal of Irrigation and Drain, Engineering, v.111, p.265-275.
Hargreaves, G.L; Samani, Z. A., 1982. Estimating potential evapotranspiration, Journal of Irrigation and Drain Engineering, v.108, p.225-230.
Hunt, L.A.; Kucharb, L.; Swanton, C.J., 1998. Estimation of solar radiation for use in crop modeling, Agricultural and Forest Meteorology. V.91, p. 293–300.
Iqbal, M., 1983. An introduction to solar radiation, New York: Academic Press, 390p.
Kaplanis, S. N., 2006. New methodologies to estimate the hourly global solar radiation: Comparisons with existing models, Renewable Energy, v.31, p.781–790.
Melo, S. B. DE., 2009. Modelagem da irradiação solar global para a região de Mossoró – RN, Dissertação (Mestrado), Universidade Federal de Viçosa.
Santos, C., M., 2012. Irradiação solar global com diferentes modelos para Alagoas. Dissertação (Mestrado em Meteorologia) – Universidade Federal de Alagoas, Instituto de Ciências Atmosféricas.
Souza, J. C.; Nicácio, R. M.; Moura, M. A. L., 2005. Global solar radiation measurements in Maceió, Brazil, Renewable Energy, v. 30, p. 1203-1220.
Spokas, K.; Forcela, F., 2006. Estimating hourly incoming solar radiation from limited meteorological data, Weed Science, v.54, p.184 – 189.
Thornthwaite, C. W., Mather, J. R., 1955. The water balance, Centerton, NJ: Drexel Institute of Technology – Laboratory of Climatology, 104p, (Publications in Climatology, v.8, n.1).
Thornton, P. E.; Running, S. W., 1999. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation, Agricultural and Forest Meteorology, v.93, p.211-228.
Tiba, C.; Fraindenraich, N.; Grossi, H.; Lyra, F., 2001. Atlas solarimétrico para localidades brasileira, Editora Universitária, UFPE, Recife.
Willmott, C. J., 1981. On the validation of models, Physical Geography, Delaware, v. 2, n. 2, p. 184-194.
Yang, K.; Koike, T.; Ye, B., 2006. Improving estimation of hourly, daily, and monthly solar radiation by importing global data sets, Agricultural and Forest Meteorology, v.137, p.43–55.