SOLAR-HYBRID AIR HEAT SYSTEM AS AN ALTERNATIVE FOR CURING AUTOMOTIVE PAINT
DOI:
https://doi.org/10.59627/cbens.2016.1906Keywords:
Solar Energy, Linear Fresnel Collector, Automotive Paint CureAbstract
Solar thermal can fulfill a substantial amount of heat demand in industrial processes. Concentrated solar process heat applications can provide hot air and hot water needed in a temperature range of up to 400°C. Curing car paint is a production process that needs hot air in a temperature range of 200ºC. In this paper, a solar-hybrid air heat system was defined and evaluated. Linear Fresnel collectors heat the pressurized water to an outlet temperature of 230 °C. The solar field is complemented by an auxiliary fossil-fuel boiler. Finally, the heat is dissipated in a convection oven via a pressurized water – air heat exchanger. The model was simulated in the software TRNSYS (TRaNsient SYstems Simulation) for the region of Belo Horizonte - MG using the Meteonorm database. The results indicate that the solar field would be self-sufficient during part of the day for clear sky and would help reduce the natural gas consumption during cloudy days.
Downloads
References
Bhaskar, M., 2009. Energy Management in Automotive Plants and Process, Energy Management Group (EMG).
FIAT – Processo Produtivo, 2015. Disponível em: http://www.fiat.com.br/institucional/processo-produtivo.html. Acessado em: 07/09/2015.
Häberle A., Scherer S., Berger M., Farian J., 2014. Fresnel CSP Technology – State of the Art and Market Overview, Projeto Energia Heliotérmica.
Hafner, B., Stoppok, O., Zahler, C., Bergerb, M., Henneckec, K., Krüger, D., 2014. Development of an Integrated Solar-fossil Powered Steam Generation System for Industrial Applications. Energy Procedia, vol. 48, pp. 1164-1172.
Hofer A., Cuevas F., Heimsath A., Nitz P., Platzer W.J., Scholl S., 2015. Extended heat loss and temperature analysis of three linear Fresnel receiver designs, Energy Procedia, vol. 69, pp. 424 – 433.
Iglauer, O., Zahler, C., 2012. Solar process heat for sustainable automobile manufacturing, Energy Procedia, vol. 30, pp. 775 – 782.
Incropera, F. P. et al., 2007. Fundamentals of Heat and Mass Transfer, John Wiley & Sons.
Klein, S., Nellis, G., 2012, Thermodynamics, Cambridge University Press.
Lancereau Q., Rabut, Q., Itskhokine, D., Benmarraze M., 2015. Wind loads on Linear Fresnel Reflectors’ technology: a numerical study, Energy Procedia, vol. 69, pp. 116 – 125.
Mekhilef S., Saidur R., Safari A., 2011. A review on solar energy use in industries – Renewable and Sustainable Energy Reviews, vol. 15, pp. 1777-1790.
Moghimi M.A., Craig K.J., Meyer J.P., 2015. Optimization of a trapezoidal cavity absorber for the Linear Fresnel Reflector, Solar Energy, Vol. 119, pp. 343–361.
Moran, M. J., Shapiro, H. N., Boettner, D. D., Bailey, M. B., 2013. Princípios de Termodinâmica para Engenharia, LTC.
Poth, Ulrich, 2008. Automotive Coatings Formulation Chemistry, Physics und Practices – Hannover, Vincentz Network.
Rungasamy A.E., Craig K.J., Meyer J.P., 2015. 3-D CFD Modeling of a Slanted Receiver an a Compact Linear Fresnel Plant with Etendue-Matched Mirror Field, Energy Procedia, vol. 69, pp. 188 – 197.
Schenk, H., Dieckmann, S., Berger, M., Zahler, C., Stoppok, O., Schulz, D., Krüger, D., 2015. Innovative integration concepts for solar-fossil hybrid process steam generation, Energy Procedia.
Teixeira, R. C., 2009. Pintura por eletrodeposição – Pintura anticorrosiva de materiais, FEQUI, Universidade Federal de Uberlândia, Uberlândia.
Yu, Guang, 2013. Simulations of Automotive Paint Curing Process in an Oven, Metal Finishing Magazine, March/April Edition.