THERMAL MODELLING OF A GRID-TIE INVERTER
DOI:
https://doi.org/10.59627/cbens.2016.1978Keywords:
temperature derating, thermal management, grid-tie inverterAbstract
The service life and reliability of electronic equipment are heavily dependent on their operating temperature. In the case of inverters, the operation temperature is related mainly to the loading, to the efficiency and the ambient conditions. This work is part of a larger study, which deals with the influence of temperature on the performance of photovoltaic grid-tie inverters, evaluating different thermal management and protection strategies in commercial inverters. In this initial phase experimental tests are being carried out for determining the thermal parameters of a 50 kW three-phase inverter in order to characterize its thermal behavior and to develop a predictive model of the operating temperature in transient regime. For these thermal and electrical evaluations test bench was assembled at the Solar Energy Laboratory of UFRGS for electric and thermal testing of grid-tie inverters. The predictive model of operating temperature and the thermal parameters experimentally determined will then be implemented in simulation software of photovoltaic systems making it possible to estimate the annual losses of energy resulting from the effects and the limitations imposed by thermal management routines during operation of PV grid-tie. Preliminary results indicate that the simplified model proposed shows good agreement with measurements. Better agreement is to be expected after the inclusion to the model of the thermal effects of the air recirculation inside the inverter.
Downloads
References
Catelani, M., Ciani, L., Simoni, E., 2012. Photovoltaic inverter: Thermal characterization to identify critical components, XX IMEKO World Congress – Metrology for Green Growth, Busan, Republic of Korea.
Figueiredo, G., Macêdo, W., Pinho, J. T., 2014. Computational Tool for Sizing and Assessment of Grid-connected Photovoltaic Systems. Energy Procedia, v. 57, p. 168-177.
Holman, J. P., 1997. Heat Transfer, 8º ed., McGraw-Hill, New York.
Incropera, F. P., DeWitt, D. P., 2003. Fundamentos de Transferência de Calor e Massa, 5º edição, LTC Editora, Rio de Janeiro.
Krenzinger, A. et al., 2007. Simulação computacional de sistema fotovoltaico conectado à rede. I CBENS - I Congresso Brasileiro de Energia Solar. ABENS - Associação Brasileira de Energia Solar.
Mallwitz, R., Engel, B., 2010. Solar Power Inverters, SMA Solar Technology AG, CIPS 2010, Nuremberg, Germany, paper 6.2.
Prieb, C. W. M., 2011. Determinação da eficiência do seguimento de máxima potencia de inversores para sistemas fotovoltaicos conectados a rede de distribuição, Tese de doutorado, PROMEC, UFRGS, Porto Alegre.
Rampinelli, G.A. et al., 2014. Mathematical models for efficiency of inverters used in grid connected photovoltaic systems. Renewable and Sustainable Energy Reviews 34, 578–587.
Rampinelli, G. A., 2010. Estudo de características elétricas e térmicas de inversores para sistema fotovoltaico conectado a rede, Tese de doutorado, PROMEC, UFRGS, Porto Alegre.
Sorensen, N., Thomas, E., Quintana, M., Barkaszi, S., Rosenthal, A., Zhang, A., Kurtz, S., 2012. Thermal study of inverter components, 37th IEEE PV Spec. Conf., Area 9.
SMA Solar Tecnology AG, 2010. Temperature Derating. Technical Information, UEN 103910.