DESIGN AND ASSEMBLY OF A TUNNEL FOR SOLAR SIMULATOR

Authors

  • Camilo Ospina Hincapie Universidade Federal do Rio Grande do Sul,
  • Luiz Antonio Piccoli Junior Universidade Federal do Rio Grande do Sul
  • Fabiano Perin Gasparin Universidade Federal do Rio Grande do Sul
  • Arno Krenzinge Universidade Federal do Rio Grande do Sul

DOI:

https://doi.org/10.59627/cbens.2014.2055

Keywords:

Solar Energy, Photovoltaic Models, Solar Simulator, Reflectivity

Abstract

Solar energy research is becoming increasingly important with the growth of renewable energies. With that in mind, the Solar Energy Laboratory of the Federal University of Rio Grande do Sul acquired a solar simulator to measure electrical characteristics of photovoltaic modules. These tests are required by the National Institute of Metrology, Quality and Technology so that the photovoltaic modules can be commercialized in Brazil. The aim of this work is to study and describe the installation of the solar simulator tunnel. The manufacturer of the equipment can provide such tunnel, however, it was decided to develop and build the tunnel in the laboratory according to the guidelines indicated by the manufacturer. The tunnel must have diaphragms and dimensions according to these guidelines. It also needs to be internally covered by a surface with high absorptivity to minimize reflections of radiation on the walls. The cover materials options were tested in experiments comparing the spectral reflectivity of different materials. The standard test conditions required that the module is at 25 ºC, so the tunnel heat load was calculated using the simulation software for thermal energy performance EnergyPlus in order to select the appropriated air conditioner. The results showed that the best material among for the inner lining of the walls was a black foam, chosen among six other materials: a black fabric, a black painted MDF, a black matte automotive adhesive, a black common automotive adhesive, a black paint and black standard foam. The air conditioning load was calculated for different values of air changes of the tunnel, and for four exchanges of air per hour resulted in the thermal load 5893 BTU / h. The materials used and the tunnel assembly are also described in the paper.

Downloads

Author Biographies

Camilo Ospina Hincapie, Universidade Federal do Rio Grande do Sul,

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Mecânica

Luiz Antonio Piccoli Junior, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Mecânica

Fabiano Perin Gasparin, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Mecânica

Arno Krenzinge, Universidade Federal do Rio Grande do Sul

Universidade Federal do Rio Grande do Sul, Departamento de Engenharia Mecânica

References

ASHRAE, 2005 – American Society of Heating, Refrigerating And Air-Conditioning Engineers. ASHRAE Handbook –Fundamentals. p. 30.12. Atlanta, 2005.

EPIA - European Photovoltaic Industry Association, 2012 Photovoltaic Energy-Electricity from the Sun. Disponível em < http://www.epia.org>

EnergyPlus Energy Simulation Software. Energy Efficiency & Renewable Energy. U.S Department of Energy. Disponível em < http://apps1.eere.energy.gov/buildings/energyplus/register.cfm?goto=eplus>

IEC 60891 (International Electrotechnical Commission), 2009 – Procedures for temperature and irradiance correction to measured I-V characteristics.

IEC 60904-9 (International Electrotechnical Commission), 2007 - Photovoltaic Devices Part 9: Solar simulator performance requirements.

Incropera, F. P., Dewitt D. P., 2011.Fundamentals of Heat and Mass Transfer, John Wiley & Sons. K-Flex, 2013, Ficha técnica da manta de espuma elastomérica, disponível em <http://www.polipex.com/_pics/_produtos/_kflex_st/_ft/ft_kflex_st.pdf>

Labee, 2013. Laboratório de Eficiência Energética de Edificações. Arquivos climáticos. Disponível em <http://www.labee.ufsc.br>, acessado em novembro de 2013.

Pasan, Measurement Systems, 2013. Tunnel construction guidelines.

REN21, 2013. Renewables Global Status Report. P. 13. Disponível em < http://www.ren21.net> acessado em Novembro de 2013.

SketchUp. Parte de Trimble Buildings. Disponível em <http://www.sketchup.com/download>

Souza, R. B. ; Prieb, César W. M. ; Krenzinger, A., 2012 . Ensaio de Módulos Fotovoltaicos no Labsol - Ufrgs. In: XV Congreso Ibérico y X Congreso Iberoamericano de Energía Solar, 2012, Vigo. Libro de Actas del XV Congreso Ibérico y X Congreso Iberoamericano de Energía Solar. Vigo, Espanha: Reprogalicia, 2012. v. 1. p. 385-390.

Taylor, N. et al., 2010. Guidelines for PV Power Measurement in Industry, Relatório disponível em http://www.jrc.ec.europa.eu/ sob o número EUR 24359 EN, 2010.

Published

2014-04-13

How to Cite

Hincapie, C. O., Piccoli Junior, L. A., Gasparin, F. P., & Krenzinge, A. (2014). DESIGN AND ASSEMBLY OF A TUNNEL FOR SOLAR SIMULATOR. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2055

Issue

Section

Anais