DETERMINATION OF THE THERMAL CAPACITY OF PHOTOVOLTAIC MODULES BUILT WITH DIFFERENT TECHNOLOGIES

Authors

  • Cristiano Saboia Ruschel
  • Fabiano Perin Gasparin
  • Arno Krenzinger

DOI:

https://doi.org/10.59627/cbens.2014.2077

Keywords:

Solar Energy, Photovoltaic Module, Thermal Capacity

Abstract

Numerical simulation programs are an excellent alternative to forecast the behavior of photovoltaic systems. FVCONECT software, developed in the Solar Energy Laboratory (LABSOL) at Federal University of Rio Grande do Sul (UFRGS), has this functionality, simulating with good precision the behavior of a grid connected system, from the knowledge of the modules, inverters, electric grid and region climate data. As part of a project from which LABSOL participates, the software will be adapted to perform the real-time monitoring of a photovoltaic system, using measured temperature, thermal radiation and local wind velocity data. For that, it is necessary to alter some of the models used on the program, as the module temperature calculation model. A model which considers the thermal accumulation of the system must be used, and it is, therefore, necessary to know the thermal capacity of the photovoltaic modules. Two different modules were tested, one built with monocrystalline silicon, and other built with thin-film technology, to obtain their thermal capacity per mass unit. These results were similar for both modules, being 823 J/kg.K for the monocrystalline silicon one, and 785 J/kg.K for the thin-films one.

Downloads

References

Andrade, A. C., Krenzinger, A., 2008. Simulação da Temperatura de Módulos Fotovoltaicos em Operação, II CBENS – II Congresso Brasileiro de Energia Solar e III Conferência Regional Latino-Americana da ISES, Florianópolis, 2008.

ASTM E-1036, 2002. Standard Methods of Testing Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells, American Society for Testing and Materials.

Duffie, J. A., Beckman, W. A., 1991. Solar Engineering of Thermal Processes, John Wiley & Sons.

Incropera, F.P., DeWitt D.P., Bergman T.L., Lavine, A.S., 2007. Fundamentos de Transferência de Calor e de Massa, LTC.

Krenzinger, A., 1987. Contribuición al Diseño de Sistemas Fotovoltaicos con Paneles Bifaciales en Combinación con Reflectores Difusos de Carácter General, Tesis Doctoral, Universidad Politecnica de Madrid, E.T.S.I. de Telecomunicacion.Madrid.

Moran, M. J., Dewitt, D. P., Munson, B. R., Shapiro, H. N., 2005. Introdução à Engenharia de Sistemas Térmicos, LTC.

Oliveski, R. C., 2000. Análise Numérica e Experimental dos Campos de Temperatura e Velocidade em Armazenadores

Térmicos, Tese de Doutorado, PROMEC, UFRGS, Porto Alegre.

Perez, R. Seals, R. Ineichen, P. Stewart, R. Menucucci, D., 1987. New Simplified Version of the Perez Diffuse Irradiance Model for Tilted Surfaces, Solar Energy, vol .39, n. 3, pp. 221-231.

Ross, R.G., 1980. Flat-Plate Photovoltaic Array Design Optimization, 14th IEEE Photovoltaic Specialists Conference, San Diego, APUD http://pveducation.org/pvcdrom/modules/nominal-operating-cell-temperature

Silva, R.B., 1972. Manual de Termodinâmica e Transmissão de Calor, DLP.

Watmuff, J. H., Charters, W. W. S., Proctor, D., 1977. Solar and Wind Induced External Coefficients for Solar Collectors, COMPLES, No 2, 56. APUD Duffie, J. A., Beckman, W. A., 1991. Solar Engineering of Thermal Processes, John Wiley & Sons.

Published

2014-04-13

How to Cite

Ruschel, C. S., Gasparin, F. P., & Krenzinger, A. (2014). DETERMINATION OF THE THERMAL CAPACITY OF PHOTOVOLTAIC MODULES BUILT WITH DIFFERENT TECHNOLOGIES. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2077

Issue

Section

Anais