MODELING THE ILLUMINANCE FOR THREE LOCATIONS IN THE STATE OF ALAGOAS

Authors

  • Sérgio da Silva Leal Instituto Federal de Educação, Ciência e Tecnologia de Pernambuco
  • Chigueru Tiba Universidade Federal de Pernambuco
  • José Leonaldo de Souza Universidade Federal de Alagoas
  • Manoel Henriques Campos Universidade Federal de Pernambuco

DOI:

https://doi.org/10.59627/cbens.2014.2080

Keywords:

Statistical models, Artificial neural networks, Illuminance, luminous efficacy, Alagoas

Abstract

Three stations were setup, in 2007, in the state of the Alagoas, for simultaneous measurements of global solar radiation, illuminance, temperature and relative humidity. One of the stations was setup in city of Maceió, capital of Alagoas and other two stations were setup in the city of Arapiraca and Santana do Ipanema. The data collected data were measurements, analysed and compared enable the generation of three different statistical models for estimating the hourly illuminance solar from the hourly global radiation, temperature and relative humidity. Besides, they were modeled by three artificial neural networks for estimating the illuminance, considering the same phisical variables of the statistical models. The statistical models and the artificial neural networks displayed a good statistical performace with RMSE% inferior to 5% and MBE% between -0.28 and 0.49%. All models can be used for estimating the solar illuminance in the surrounding regions with climatic and phytogeographic similarities.

Downloads

References

Alados I., Foyo-Moreno I. y Alados-Arboledas, L. (1996). Photosynthetically active radiation: measurements and modelling. Agricultural and Forest Meteorology 78, 1-2, 121-131.

Barbero, F. J.; Lopez, G.; Batlles, F.J. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks. Annales Geophysicae, v. 24, p.2105-2114, 2006.

CB-02- Comitê Brasileiro de Construção Civil. Procedimento de Cálculo para a Determinação da Iluminação Natural em Ambientes Internos, 02:135.02-003, 1999.

Erbs D. G., Klein, S. A. and Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly – average global radiation, Solar Energy 28, 4, 293-302.

Escobedo, J.F.;Gomes E. N.; Oliveira A.P.; Soares J. Fração solar Kuv, Kpar e KIV: Análise variacional e equações de estimativa em função de KT. I CBENS, 2007

LI-COR Biosciences (2013). http://www.licor.com/env/products/light/photometric_sensors/index.html. Acesso: ago 2013.

OSRAM(2013).http://www.osram.com.br/osram_br/Ferramentas_%26_Catlogos/_pdf/Arquivos/Iluminao_Geral/ Manual_do_Curso_Iluminacao%2c_Conceitos_e_Projetos/Manual_Luminotecnico_-_parte_01.pdf. Acesso: ago 2013.

Paroscientific, Inc. (2004). Met3A calculation of dew point, www.paroscientific.com/dewpoint.htm.

Perez R., Ineichen P., Seals R., Michalsky J. and Stewart R. (1990). Modeling daylight availability and irradiance components from direct, and global irradiance, Solar Energy 44, 5, 271-289.

WMO (2010). WMO guide to meteorological instruments and methods of observation. (2008 edition, updatedin 2010) http://www.wmo.int/pages/prog/www/IMOP/CIMO-guide.html. Acesso: fev. 2014.

Published

2014-04-13

How to Cite

Leal, S. da S., Tiba, C., Souza, J. L. de, & Campos, M. H. (2014). MODELING THE ILLUMINANCE FOR THREE LOCATIONS IN THE STATE OF ALAGOAS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2080

Issue

Section

Anais