INFLUENCE OF THE WIDTH OF THE BUSBARS AND FIRING TEMPERATURE IN SOLAR CELLS WITH ALUMINUM BACK SURFACE FIELD

Authors

  • Vanessa Alves Gonçalves Pontifícia Universidade Católica do Rio Grande do Sul
  • Izete Zanesco Pontifícia Universidade Católica do Rio Grande do Sul
  • Adriano Moehlecke Pontifícia Universidade Católica do Rio Grande do Sul

DOI:

https://doi.org/10.59627/cbens.2014.2119

Keywords:

Solar Cells, Aluminium Back Surface Field, Busbars

Abstract

The use of solar energy for electric energy production has been highlighted due to the exhaustion of natural sources. Solar cells fabricated in p-type Si-Cz wafers and with back surface field formed by aluminum paste are largely produced by industry. The formation of the back surface field and busbars in a solar cell is very important to the overall performance of the solar cell. The objective of this study is to evaluate the influence of the width of the rear busbars and of the firing temperature in solar cells developed in solar grade Si-Cz wafers, with back surface field performed by aluminum paste. The width of the busbars was ranged and the simultaneous firing peak temperature was optimized for Ag, Al, and Ag/Al pastes. The firing temperature was ranged from 840 °C to 970 °C. The fill factor for the solar cells with busbars of 10 mm was 0.75, lower than the value of 0.78 obtained for devices with busbar of 3.8 mm, increasing the open circuit voltage from 579 mV to 597 mV. The efficiency achieved was 14.5 %. The minority charge carrier diffusion length measured in solar cells with busbars of 3.8 mm was 516 μm. This value was greater than that obtained with devices with bases of 10 mm, which value was 132 μm.

Downloads

Author Biographies

Vanessa Alves Gonçalves, Pontifícia Universidade Católica do Rio Grande do Sul

Faculdade de Física, Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Núcleo de Tecnologia em Energia Solar

Izete Zanesco, Pontifícia Universidade Católica do Rio Grande do Sul

Faculdade de Física, Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Núcleo de Tecnologia em Energia Solar

Adriano Moehlecke, Pontifícia Universidade Católica do Rio Grande do Sul

Faculdade de Física, Programa de Pós-Graduação em Engenharia e Tecnologia de Materiais, Núcleo de Tecnologia em Energia Solar

References

Atlas Aplicações de Energia Solar. Disponível em: <http://www.aneel.gov.br/aplicacoes/atlas/pdf/03 Energia_Solar(3).pdf>. Acesso em: 22 de abril 2012.

Basu, P. K. et al., 2013. 18.7% Efficient inline-diffused screen-printed silicon wafer solar cells with deep homogeneous emitter etch-back, Solar Energy Materials & Solar Cells, v. 117, pp. 412–420.

Cao, X. L., Chen, Y. M., 2011. Simulation and analysis on the property of aluminum back-surface-field of monocrystalline silicon solar cells, Journal of Optoelectronics and Advanced Materials. v. 13, p. 432 – 438.

Chen, Y., Shen, H., Altermatt, P. P., 2014. Analysis of recombination losses in screen-printed aluminum-alloyed back surface fields of silicon solar cells by numerical device simulation, Solar Energy Materials & SolarCells, v. 120, pp. 356–362.

Dhariwal, S.R.; Kulshreshtha, A. P., 19 81. Theory of back surface field silicon solar cells. Solid-State Electronics, v. 24, p. 1161 – 1165.

Fath, P., Keller, S., Winter, P., Joo β, W., Herbst, W., 2009. Status and perspective of crystalline silicon solar cell production, 36th IEEE PVSC, Seattle.

Gonçalves, A. Desenvolvimento de Células Solares: Influência do Processo de Formação do Ca mpo Retrodifusor com Pasta de Alumínio. Porto Alegre. 2013. 124 p. Dissertação (Mestrado em Engenharia e Tecnologia dos Materiais). PGETEMA, Pontifícia Universidade Católica do Rio Grande do Sul, Brasil.

Honsberg, C.; Bowden, S. Photovoltaics CDROM. Disponível em:<http://www.udel.edu/igert/pvcdrom>. Acesso em: 22 abril 2012.

Kalio, A. et al., 2011. Metallization of n-type silicon solar cells using fine line printing techniques, Energy Procedia, v. 8, pp. 571–576.

Kerschaver, E. V.; Beaucarne, G., 2006. Back-contact solar cells: a review, Prog ress in Photovoltaics: Research and Applications, v. 14, pp. 107 – 123.

Kwon, T., Kim, S., Kyung, D., Jung, W., Kim, S., Lee, Y.; Kim, Y., Jang, K., Jung, S., Shin, M., Yi, J., 2010. The effect of firing temperature profiles for the high efficiency of crystalline Si solar cells, Solar Energy Materials and Solar Cells, v. 94, pp. 823–829.

Moehlecke, A.; Zanesco, I., 2010. Pilot production of p + pn + and n + pp + silicon solar cells: efficiency x yield, 25th

European Photovoltaic Solar Energy Conference and Exhibition / 5th World Conference on Photovoltaic Energy Conversion, Valencia.

Peter, S., Lehmann, H., 2009. Renewable energy outlook 2030 energy watch group global renewable energy scenarios, 24th European photovoltaic Solar Energy Conference, Hamburg.

Popovich, V. A. et al., 2013. Understanding the properties of silicon solar cells aluminium contact layers and its effect on mechanical stability, Materials Sciences and Applications, v. 4, pp. 118-127.

Zanesco, I., Gonçalves, V. A., Moehlecke, A., 2013. Infl uence of the aluminum paste surface density on the electrical parameters of silicon solar cells, 2013 ISES Solar World Congress, Cancun.

Published

2014-04-13

How to Cite

Gonçalves, V. A., Zanesco, I., & Moehlecke, A. (2014). INFLUENCE OF THE WIDTH OF THE BUSBARS AND FIRING TEMPERATURE IN SOLAR CELLS WITH ALUMINUM BACK SURFACE FIELD. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2119

Issue

Section

Anais