SIMULATION OF THE OPERATION MODES OF A LOW VOLTAGE MICROGRID WITH PHOTOVOLTAIC SYSTEM

Authors

  • Gabriel Antônio Taquêti Silva Universidade Federal de Espírito Santo
  • Jussara Farias Fardin Universidade Federal de Espírito Santo
  • Lucas Frizera Encarnação Universidade Federal de Espírito Santo

DOI:

https://doi.org/10.59627/cbens.2014.2124

Keywords:

Microgrid, Islanding, Load shedding, Synchronization, Photovoltaic panel

Abstract

A microgrid is a cluster of distributed generations (DGs), loads and energy storages that work in a coordinate way to be treated by the main grid as a generator or a controllable load. Typically, a microgrid operates in parallel with the main grid. However, eventual energy quality issues may force the microgrid to disconnect from the main grid and operate in autonomous mode, with load shedding ability when internal generation is not enough. When grid service returns, the microgrid can change its operational mode in order to synchronize with the main grid and, later, reconnect to the grid, returning to its initial state. This paper proposes the modeling and simulation of a microgrid connected to the distribution grid of the Federal University of Espírito Santo (UFES) to verify its behavior when connected to the main grid, during islanding and at synchronization and reconnection. The microgrid proposed in this paper is composed of a photovoltaic system, a battery and loads. From the results obtained through simulation in MATLAB/Simulink®, it is proven that the control strategies provide to the microgrid stability and reliability in power supply to associated loads.

Downloads

Author Biographies

Gabriel Antônio Taquêti Silva, Universidade Federal de Espírito Santo

Departamento de Engenharia Elétrica

Jussara Farias Fardin, Universidade Federal de Espírito Santo

Departamento de Engenharia Elétrica

Lucas Frizera Encarnação, Universidade Federal de Espírito Santo

Departamento de Engenharia Elétrica

References

Adamidis, G., Tsengenes, G., Kelesidis, K., 2010. Three Phase Grid Connected Photovoltaic System with Active and Reactive Power Control Using “Instantaneous Reactive Power Theory”. International Conference on Renewable Energies and Power Quality (ICREPQ’10), Granada (Spain), March 2010.

ANEEL, 2012. Resolução Normativa Nº 482, de 17 de Abril de 2012.

Cho, C., Jeon, J., Kim, J., Kwon, S., Park, K., Kim, S., 2011. Active Synchronizing Control of a Microgrid. IEEE Transactions on Power Electronics, Vol. 26, NO. 12, December 2011.

Dias, M. V. X., Borotni, E. C., Haddad, J., 2005. Geração distribuída no Brasil: oportunidades e barreiras. Sociedade Brasileira de Planejamento Energético, Revista Brasileira de Energia, Vol. 11 / Nº 2.

Hagiwara, M., Maeda, R., Akagi, H., 2011. Control and Analysis of the Modular Multilevel Cascade Converter Based on Double-Star Chopper-Cells (MMCC-DSCC). IEEE Transactions on Power Electronics, Vol. 26, NO. 6, June 2011.

Hatziargyriou, N., 2002. MICROGRIDS – Large Scale Integration of Micro-Generation to Low Voltage Grids. National Technical University of Athens, School of Electrical and Computer Engineering.

Hu, W., Wang, Y., Song, X., Wang, Z., 2009. An Improved DC-Link Voltage Control Method for Multiple Grid Connected Converter in Direct Drive Wind Power Generation System. Applied Power Electronics Conference and Exposition, APEC 2009, Twenty-Fourth Annual IEEE.

Kagan, N., Oliveira, C. C. B., Robba, E. J., 2010. Introdução aos Sistemas de Distribuição de Energia Elétrica. Editora Edgard Blucher, 2ª ed., 2010.

Katiraei, F., Iravani, M. R., Lehn, P. W., 2005. Micro-Grid Autonomous Operation During and Subsequent to Islanding Process. IEEE Transactions on Power Delivery, Vol. 20, No. 1, January 2005.

Laaksonen, H., Saari, P., Komulainen, R., 2005. Voltage and Frequency Control of Inverter Based Weak LV Network Microgrid. International Conference on Future Power Systems.

Lasseter, R. H., Piagi, P., 2004. Microgrid: A Conceptual Solution. University of Wisconsin-Madison, PESC’04 Aachen, Germany.

Matos, F. F., Sousa, C. V., Rezende, G. M., Toledo, R. A. N., Seleme Jr., S. I., Silva, S. R., 2010. Projeto e Construção de Filtro LCL para Conversores PWM. Departamento de Engenharia Elétrica UFMG, XVIII Congresso Brasileiro de Automática, Setembro 2010, Bonito-MS.

Padua, D. B., 2011. Modelagem e Análise do Sistema Elétrico de Distribuição em 11,4 kV do Campus de Goiabeiras da UFES. Projeto de Graduação, UFES, Vitória.

Peças Lopes, J. A., Moreira, C. L., Resende, F. O., 2005. Microgrids Black Start and Islanded Operation. INESC Porto, FEUP. 15th PSCC, Liege, 22-26 August 2005.

Peças Lopes, J. A., Moreira, C. L., Madureira, A. G., 2006. Defining Control Strategies for MicroGrids Islanded Operation. IEEE Transactions on Power Systems, Vol. 21, NO. 2, May 2006.

PRODIST – Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional. Módulo 8 – Qualidade de Energia, Revisão 4, 2012. Disponível em: <http://www.aneel.gov.br>. Acesso em 26 nov. 2013.

Sun, W., Chen, Z., Wu, X., 2009. Intelligent Optimize Design of LCL Filter for Three-Phase Voltage-Source PWM Rectifier. Power Electronics and Motion Control Conference, IPEMC '09, IEEE 6th International.

Tremblay, O., Dessaint, L., Dekkiche, A., 2007. A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. Electrical Engineering Department, Ecole de Technologie Superieure.

Xu, L., Miao, Z., Fan, L., 2012. Control of a Battery System to Improve Operation of a Microgrid. Departmen of Electrical Engineering, University of South Florida, Tampa, FL, USA.

Published

2014-04-13

How to Cite

Silva, G. A. T., Fardin, J. F., & Encarnação, L. F. (2014). SIMULATION OF THE OPERATION MODES OF A LOW VOLTAGE MICROGRID WITH PHOTOVOLTAIC SYSTEM. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2124

Issue

Section

Anais