AN ENERGY EFFICIENT HYBRID SYSTEM FOR BATH WATER HEATING
DOI:
https://doi.org/10.59627/cbens.2014.2143Keywords:
Solar Energy, Energy Efficiency, Heating System, Modeling, System AutomationAbstract
This paper presents a domestic water heating unit, with high level of automation, specially designed to reduce energy consumption in Brazilian residences, where almost 25% of electrical energy is spent to heat water for bathing. The system is composed basically by solar plates, a boiler and an electric shower. Automatic valves and power controllers are used to regulate the temperature and flow during the bath. A microcontroller is responsible to control the system, aiming to meet the requirements (temperature and water flow) defined by the user, without being necessary that he or she opens the cold or hot water valves or regulates the shower’s power, increasing the user’s comfort. The second goal of the system is to reduce energy consumption and decrease waste of water in beginning of the shower. A mathematical model was developed and a prototype was used to validate it. The proposed system proved to be economically viable, saving expressive quantities of electrical energy and water if compared to traditional systems.
Downloads
References
Badescu, V. (2007). Optimal control of flow in solar collectors for maximum exergy extraction. International journal of heat and mass transfer, 50(21-22), 4311–4322. doi:10.1016/j.ijheatmasstransfer.2007.01.061
Colle, S.; Starke, A. R. ; Passos, L. A. A.; Veiga, C. E. (2010). Uma análise de sistemas de aquecimento solar de água para uso doméstico no Brasil. Em III CBENS - Congresso Brasileiro de Energia Solar. Belém.
CRESESB - Centro de Referência para Energia Solar e Eólica Sérgio Brito. (2013). Potencial Energético Solar - Sundata. Retrieved October 07, 2013, de http://www.cresesb.cepel.br/sundata/index.php
Duffie, J., & Beckman, W. (1980). Solar engineering of thermal processes. NASA STI/Recon Technical Report A (Second., p. 919). New York: John Wiley & Sons.
ELETROBRAS. (2009). Avaliação do Mercado de Eficiência Energética do Brasil (p. 77). Rio de Janeiro.
Florio, J. L. (2010). Sistema de Monitoração e Controle para Aquecedor Solar. Universidade Estadual de Campinas. Retirado de http://www.bibliotecadigital.unicamp.br/document/?code=000774754
Goulart, S. V. G., Lamberts, P. R., & Firmino, O. S. (1998). Dados Climáticos para Projeto e Avaliação Energética de Edificações para 14 Cidades Brasileiras (2nd ed., p. 345). Florianópolis: Núcleo de Pesquisa em Construção/UFSC.
Griego, D., Krarti, M., & Hernández-Guerrero, A. (2012). Optimization of energy efficiency and thermal comfort measures for residential buildings in Salamanca, Mexico. Energy and Buildings, 54, 540–549. doi:10.1016/j.enbuild.2012.02.019
Maceti, H., Levada, C., & Lautenschleguer, I. (2011). Ciência e cotidiano: A Física do chuveiro elétrico. Scientia Plena, 3, 313–318. Retirado de http://www.scientiaplena.org.br/ojs/index.php/sp/article/view/607
Núñez-Reyes, A., Normey-Rico, J. E., Bordons, C., & Camacho, E. F. (2005). A Smith predictive based MPC in a solar air conditioning plant. Journal of Process Control, 15(1), 1–10. doi:10.1016/j.jprocont.2004.05.001
Ormenese, M. (2009). Controlador fuzzy para otimização de sistemas de aquecimento de agua com coletores solares. Universidade Estadual de Campinas. Retirado de http://www.bibliotecadigital.unicamp.br/document/?code=000469096
Passos, L.; Colle, S.; Cardemil, J. M. (2012). Um Estudo sobre os Impactos Técnicos da Introdução de Sistemas de Aquecimento Solar no Brasil. Em XV Congresso Ibérico e X Iberoamericano de Energía Solar. Vigo, Espanha.
Salazar, J., Abreu, S., Borges, T., Colle, S., & Reguse, W. (2003). Optimization of a compact solar domestic hot water system for low-income families with peak demand and total cost constraints. Em ISES Solar World Congress 2003 (p. 6). Göteborg, Suécia. Retirado de https://www.labsolar.ufsc.br/publicacoes/solar/eventos/2003/ISES2003/salazar_abreu.pdf
Smith, C. C., & Weiss, T. A. (1977). Design application of the Hottel-Whillier-Bliss equation. Solar Energy, 19, 109–113. Retirado de http://www.sciencedirect.com/science/article/pii/0038092X77900470
UNEP. (2013). Global Trends in Renewable Energy Investment 2013 (p. 84). Frankfurt am Main. Retirado de http://www.unep.org/pdf/GTR-UNEP-FS-BNEF2.pdf
Vizeu, R. (2009). Chuveiro elétrico consome mais energia, mas gasta menos água. Folha de São Paulo. São Paulo. Retirado de http://www1.folha.uol.com.br/folha/dinheiro/ult91u551959.shtml