ATMOSPHERIC TURBIDITY OF THE LINKE MODEL IN BOTUCATU/SAO PAULO, BRAZIL

Authors

  • Cícero Manoel dos Santos Universidade Estadual Paulista
  • João Francisco Escobedo Universidade Estadual Paulista
  • Eduardo Nardini Gomes Universidade Estadual Paulista

DOI:

https://doi.org/10.59627/cbens.2014.2158

Keywords:

Linke, Atmosphere, Aerosols, Water vapor, Turbidity

Abstract

The attenuation of beam irradiance at normal incidence (Ib) in a clean and dry atmosphere is represented by atmospheric turbidity factor. This is an index that indirectly indicates the level of pollution in the local atmosphere, being of great importance in studies relative the climatology, atmospheric pollution, indirect measurement of aerosol concentration, an indirect measure of water vapor and indirect measurement of beam irradiance at normal incidence (Ib). In this work of Linke turbidity factor (TL) is calculated based on two methodologies (TLDj and TLLi), to Botucatu/SP. The data series used was the period from 1996 to 2008. The results show the highest values of turbidity in spring and summer (TLDj between 4.093 and 4.39; TLLi between 4.51 and 4.83). The months between April and August had the lowest values (TLDj = 3.21 ± 0.95 in may and TLDj = 3.46 ± 0.89 in august; TLLi = 3.55 ± 1.03 in may and 3.84 ± 0.98 in august). To TLLi approximately 92.06% of the occurrences of turbidity are in the interval (2.0-6.0) and 93.95% of occurrences for TLDj. The wind speed and air temperature positively correlated with atmospheric turbidity. The results indicate that when TLDj ≤ 2.0% occurred ≈ 41.83 hours of clear sky, representing a Rayleigh's atmosphere pure and clear. When (2.0 <TLDj ≤ 4.0) ≈ 30.50% of TL shows a cloudy atmosphere. About ≈ 28.12% of hours clean, the turbidity obtained exceeded 4.0, representing an atmosphere with high turbidity or polluted. The Botucatu region is strongly influenced by water vapor and aerosols source in adjacent locations.

Downloads

Author Biographies

Cícero Manoel dos Santos, Universidade Estadual Paulista

Faculdade de Ciências Agronômicas, Departamento de Engenharia Rural – FCA/UNESP

João Francisco Escobedo, Universidade Estadual Paulista

Faculdade de Ciências Agronômicas, Departamento de Engenharia Rural – FCA/UNESP

References

Allen, A. G., Cardoso, A. A., da Rocha, G. O., 2004. Influence of sugar cane burning on aerosol soluble íon composition in Southeastern Brazil. Atmospheric Environment, v. 38, p. 5025 – 5038.

Ångström, A., 1961. Techniques of determining the turbidity of the atmosphere. Tellus, v.13, p.214–223.

Becker, S., 2001. Calculation of direct solar and diffuse radiation in Israel. International Journal of Climatology, v.21, p1561-76.

Canada, J., Pinazo, J., M.; Boscá, J. V., 1993. Determination of Ångström’s turbidity coefficient at Valencia. Renew Energy, v.3, p. 621–626.

Chaâbane, M., Masmoudi, M., Medhioub, K., 2004. Determination of Linke turbidity factor from solar radiation measurement in northern Tunisia. Renewable Energy, v.29, p.2065–2076.

Chaves, A. M., Escobedo, J. F., 1999. Solar radiation data base management software. Revista Brasileira de Meteorologia, v.14, n.2, p.91-98.

Codato, G., Oliveira, A. P., Soares, J., Escobedo, J. F., Gomes, E. G., Dal Pai, A., 2008. Global and diffuse solar irradiances in urban and rural areas in southeast Brazil. Theoretical and Applied Climatology, v. 93, p.57–73.

Coste, L., Eftimie, E., 2010. Linke turbidity modeling for Brasov urban area. In: International Conference on Renewable Energies and Power Quality (ICREPQ’10).

Diabaté, L., Remund, J., Wald, L., 2003. Linke turbidity factors for several sites in Africa. Solar Energy, v.75, p.111–119.

Diouri, M.; El Amaroui, L.; Jaenicke, R.; Schütz, L. Atmospheric Turbidity over the Angad area of Morocco. Journal of Aerosol Science, v.31 (suppl 1), S279–S280.

Djafer, D., Irbah, A., 2013. Estimation of atmospheric turbidity over Ghardaïa city. Atmospheric Research, v.128, p.76–84.

Ellouz, F., Masmoudi, M., Medhioub, K., 2013. Study of the atmospheric turbidity over Northern Tunisia. Renewable Energy, v.51, p. 513–517.

Elminir, K. H., Hamid, R. H., El-Hussainy, F., Ahmed, E., Ghitas Beheary, M. M., Khaled, M., Abdel-Moneim., 2006. The relative influence of the anthropogenic air pollutants on the atmospheric turbidity factors measured at an urban monitoring station. Science of the Total Environment, v.368, p.732–743.

Eltbaakh, Y. A.; Ruslan, M. H.; Alghoul, M. A.; Othman, M. Y.; Sopian, K., 2012. Issues concerning atmospheric turbidity indices. Renewable and Sustainable Energy Reviews, v.16, p. 285–6294.

Formenti, P., Winkler, H., Fourie, P., Piketh, S., Makgopa, B., Helas, G., Andrea, M. O., 2002. Aerosol optical depth over a remote semi-arid region of South Africa from spectral measurements of the daytime solar extinction and the nighttime stellar extinction. Atmospheric Research, v.62, p.11–32.

Freitas, S. R., Longo, K. M., Dias, M. A. F. S., Dias, P. L. S., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., Recuero, F. S., 2005. Monitoring the Transport of Biomass Burning Emissions in South America. Environmental Fluid Mechanics, v.5, p.135–167.

Gomes, E. N., 2006. Medidas e modelos de estimativa da radiação direta na incidência. Tese de Doutorado, Faculdade de Agronomia, Universidade Estadual Paulista, Botucatu/São Paulo, 100p.

Gueymard, C. A., Garrisson, J. D., 1998. Critical evaluation of precipitable water and atmospheric turbidity in Canada using measured hourly solar irradiance. Solar Energy, v.62, n.4, p.291–307.

Holben, B. N., Tanré, D., Smirnov, A., Eck, T. F., Slutsker, I., Abuhassan, N., Newcomb, W. W., Schafer, J. S., Chatenet, B., Lavenu, F., Kaufman, Y. J., Vande Castle, J., Setzer, A., Markham, B., Clark, D., Frouin, R., Halthore, R., Karneli, A., O’neill, N. T., Pietras, C., Pinker, R. T., Voss, K., Zibordi, G., 2001. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. Journal of Geophysical Research, v. 106, n. 11, p. 12.067–12.097.

Ineichen, P., 2008. Conversions function between the Linke turbidity and the atmospheric water vapor and aerosol content. Solar Energy, v.82, p.1095–1097.

Iqbal, M., 1983. An introduction to solar radiation. New York: Academic Press, 390p.

Karayel, M., Navvab, M. Ne’eman, E., Selkowitz, S., 1984. Zenith luminance and sky luminance distributions for daylighting calculations. Energy and Buildings, v. 6, n.3, p. 283-91.

Kasten, F., 1980. A simple parameterization of the pyrheliometer formula of the Linke turbidity factor. Meteor Rundsch, v.33, p.124–127.

Kasten, F., 1996. The Linke turbidity factor based on improved values of the integral Rayleigh optical thickness. Solar Energy, v.56, n.3, p.239-44.

Katz, M., Baille A., Mermier, M., 1982. Atmospheric turbidity in a semi rural site I: evaluation and comparison of different atmospheric turbidity coefficients. Solar Energy, v.28, p.323–327.

Kryza, M., Szymanowski, M., Migała, K., Pietras, M., 2010. Spatial information on total solar radiation: Application and evaluation of the r.sun model for the Wedel Jarlsberg Land, Svalbard. Polish Polar Research, v. 31, n.1, p.17–32.

Leckner, B., 1978. The spectral distribution of solar radiation at the earth’s surface-elements of a model. Solar Energy, v. 20, p. 143-150.

Li, D. H. W., Lam, J. C., 2002. A study of atmospheric turbidity for Hong Kong. Renewable Energy, v.25, p. 1-13.

Linke, E., 1922. Transmission-koeffizient und Trübungsfaktor. Beiträgezur Physik der freien Atmosphäre, v. 10, p.91-103.

López, G., Batlles, F. J., 2004. Estimate of the atmospheric turbidity from three broad-band solar radiation algorithms: A comparative study. Annales Geophysicae, v.22, p.2657–2668.

Louche, A., Peri, G., Iqbal, M., 1986. An analysis of Linke turbidity factor. Solar Energy, v.37, n.6, p.393-6.

Masmoudi, M., Chaâbane, M., Medhioub, K., Elleuch, F., 2003a. Variability of aerosol optical thickness and atmospheric turbidity in Tunisia. Atmosphere Research, v. 66, p.175–88.

Masmoudi, M., Chaâbane, M., Tanré D., Goloub, P., Blarel, L., Elleuch, F., 2003b. Spatial and temporal variability of aerosol: size distribution and optical properties. Atmosphere Research, v.66, p.1–19.

Mavromatakis, F., Franghiadakis, Y., 2007. Direct and indirect determination of the Linke turbidity coefficient. Solar Energy, v.81, p.896–903.

Pedrós, R., Utrillas, M. P., Martínez-Lozano, J. A., Tena, F., 1999. Values of broad-band turbidity coefficients in a Mediterranean coastal site. Solar Energy, v.66, n.1, p.11-20.

Rahoma, U. Ali., Hassan, A. H., 2012. Determination of atmospheric turbidity and its correlation with climatologically parameters. American Journal of Environmental Science, v.8, p.597-604.

Rapti, A. S., 2000. Atmospheric transparency, atmospheric turbidity and climatic parameters. Solar Energy, v.69, n.2, p.99–111.

Reboita, M. S., Gan, M. A., Rocha, R. P., Ambrizzi, T., 2010. Regimes de precipitação na América do Sul: Uma revisão bibliográfica. Revista Brasileira de Meteorologia, v.25, p. 185-204.

Remund, J., Wald, L., Lefevre, M., Ranchin, T., Page, J., 2003. Worldwide Linke turbidity information. Proceedings of ISES Solar World Congress, 16-19 June, Gteborg, Sweden, CD-ROM published by International Solar Energy Society.

Salazar, G. A., 2011. Estimation of monthly values of atmospheric turbidity using measured values of global irradiation and estimated values from CSR and Yang Hybrid models. Study case: Argentina. Atmospheric Environment, v.45, p. 2465-2472.

Shaltout, M. A. M., Hassan, A. H., Fathy, A. M., 2001. Study of the solar radiation over Menia. Renewable Energy, v.23, p.621-639.

Spokas, K., Forcela, F., 2006. Estimating hourly incoming solar radiation from limited meteorological data. Weed Science, v.54, p.184 – 189.

Teramoto, E. T., Escobedo, J. F., 2012. Análise da frequência anual das condições de céu em Botucatu, São Paulo. Revista Brasileira Engenharia Agrícola Ambiental, v.16, n. 9, p.985-992.

Trabelsi, A., Masmoudi, M., 2011. An investigation of atmospheric turbidity over Kerkennah Island in Tunisia. Atmospheric Research, v.101, p.22–30.

Wen, C-C., Yeh, H-H., 2009. Analysis of atmospheric turbidity levels at Taichung Harbor near the Taiwan Strait. Atmospheric Research, v.94, p.168–177.

WMO, 1990. Guide to meteorological observations methods, Tn-8, Geneva, Switzerland, WMO Secretariat. p. 925–32 [chapter 9].

Published

2014-04-13

How to Cite

Santos, C. M. dos, Escobedo, J. F., & Gomes, E. N. (2014). ATMOSPHERIC TURBIDITY OF THE LINKE MODEL IN BOTUCATU/SAO PAULO, BRAZIL. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2158

Issue

Section

Anais