BIOMASS AND SOLAR THERMAL ENERGY IN THE SYNTHESIS AND OPTIMIZATION OF POLYGENERATION SYSTEMS

Authors

  • Monica Carvalho Universidade Federal da Paraíba
  • Alberto Romero Energy Renewables & Carbon Management Group, Mining Innovation Rehabilitation and Applied Research Corporation (MIRARCO) / BESTECH Research & Development
  • Dean Millar Energy Renewables & Carbon Management Group, Mining Innovation Rehabilitation and Applied Research Corporation (MIRARCO)/ Bharti School of Engineering, Laurentian University

DOI:

https://doi.org/10.59627/cbens.2014.2193

Keywords:

polygeneration, biomass, solar energy, optimization, linear programming

Abstract

The optimal synthesis of a polygeneration system can be obtained from information on the energy demands of the consumer center, based on the technical characteristics of the equipment and on the energy resources available. The optimal design comprehends the optimal configuration of the system to be installed as well as the optimal operation mode throughout the year, considering energy flows at market prices and utilizing the productive capacity of the installed equipment. The optimization model compares the annual economic balances for all the feasible configurations of the system through a polygeneration superstructure. A hospital located in João Pessoa, Paraíba, Brazil, was considered herein. The energy services considered were electricity, heat (hot water and laundry), steam (sterilization), and coolth (ar-conditioning). Commercially available equipment were considered, from the most conventional (diesel engines) to the least usual (absorption chillers), and renewable energy resources were included in the form of biomass and solar thermal energy. An objective function is minimized, always meeting the energy demands of the consumer center. The optimal synthesis is obtained as a result of the solution of a mixed integer linear programming model, in which the objective function was the annual cost (R$/year). For the actual scenario defined in João Pessoa, the optimal solution included the utilization of biomass as an energy resource, besides the installation of 284 flat plate solar collectors for the production of hot water, resulting in annual savings of R$ 146,867 in comparison with the traditional system. It was observed that an investment strategy that allows for slow amortizations will incentivize the use of solar collectors and biomass, with high investments in equipment, but with considerable benefits in the long term.

Downloads

Author Biography

Monica Carvalho, Universidade Federal da Paraíba

Departamento de Engenharia de Energias Renováveis

References

ANEEL, 2012. RESOLUÇÃO NORMATIVA Nº 482, DE 17 DE ABRIL DE 2012. Estabelece as condições gerais para o acesso de microgeração e minigeração distribuída aos sistemas de distribuição de energia elétrica, o sistema de compensação de energia elétrica, e dá outras providências. Disponível em <http://www.aneel.gov.br/cedoc/ren2012482.pdf >. Acesso em 27/12/2013.

Araújo, M. M. D., 2004. Contribuição Metodológica para o Diagnóstico Exergético de Sistemas Térmicos e Elétricos - Estudo de Caso do Hospital Universitário Lauro Wanderley, Dissertação de Mestrado, DEM, UFPB, João Pessoa.

Arcuri, P., Florio, G., Fragiacomo, P., 2007. A mixed integer programming model for optimal design of trigeneration in a hospital complex, Energy, vol. 32, n. 8, pp.1430-1447.

Basrawia, F., Yamadab, T., Obarac, S, 2013. Theoretical analysis of performance of a micro gas turbine co/trigeneration system for residential buildings in a tropical region, Energy and Buildings, vol. 67, pp. 108–117.

Carvalho, M., 2011. Thermoeconomic and environmental analyses in the synthesis of polygeneration systems for the residential-commercial sector. Disponível em <http://zaguan.unizar.es/record/5744/files/TESIS-2011-025.pdf> Acesso em 27/12/2013.

CLIMATICUS 4.2 - Software versão beta. Banco de dados Climáticos. Estratégias de projeto 58 cidades brasileiras. Base de dados do INMET 1961-1990. Faculdade de Arquitetura e Urbanismo da Universidadede São Paulo - Departamento de Tecnologia - Laboratório de conforto ambiental e eficiência energética, 2005. Disponível em , consultado em 29/11/2013.

ENERGISA, 2012. NDU 015: Critérios para Conexão de Acessantes de Geração Distribuída - Conexão em Média Tensão. Disponível em <http://www.energisa.com.br/paraiba/pdfedoc/Normas_Tecnicas/ndu015.pdf> Acesso em 27/12/2013.

Erbs, D.G., Klein, S.A., Beckman, W.A., 1983. Estimation of degree-days and ambient temperature bin data from monthly-average temperatures, ASHARE Journal, vol. 25, n. 6, pp. 60-65.

França, A. F. R. T., Caseiro, L.P.V.C., 2008. Cogeração e Trigeração, Planeamento e Produção de Electricidade, Departamento de Eng. Eletrotecnica e de Computadores, Faculdade de Ciências e Tecnologia da Universidade de Coimbra.

Freschi, F., Giaccone, L., Lazzeroni, P, Repetto, M., 2013. Economic and environmental analysis of a trigeneration system for food-industry: A case study, Applied Energy, vol. 107, pp. 157–172.

Garcia, X., 2006. Analysis of building energy regulation and certification in Europe. Their role, limitations and differences, Energy and Buildings, vol. 38, pp. 381-392.

Hinotani, K., Kanatani, K., Osumi, M., 1979. An evacuated glass tube solar collector and its application to a solar cooling, heating and hot water supply system for the hospital in Kinki University, Solar Energy, vol. 22, n. 6, pp. 535–545.

Lozano, M. A., Ramos, J. C., Carvalho, M., Serra, L.M., 2009. Structure optimization of energy supply systems in tertiary sector buildings, Energy and Buildings, vol. 41, n. 10, pp. 1063-1075

Marimón, M. A., Arias, J., Lundqvist, P. C., Bruno, J. C., Coronas, A., 2011. Integration of trigeneration in an indirect cascade refrigeration system in supermarkets, Energy and Buildings, vol. 43, n. 6, pp. 1427–1434.

Mendonça, F., Danni-Oliveira, I. M., 2007. Climatologia: noções básicas e climas do Brasil, Oficina de Textos.

Nepote, M. H. A., Monteiro, I. U., Hard y, E., 2009. Associação entre os índices operacionais e a taxa de ocupação de um centro cirúrgico geral, Rev. Latino-Am. Enfermagem [online], vol. 17, n.4.

PBGÁS – Companhia Paraibana de Gás. Tarifas. Disponível em <http://www.pbgas.com.br/?page_id=1477>. Acesso em 24/12/2013.

RETSCREEN – Natural Resources Canada, 2007. Solar Water Heating Project Analysis. Clean Energy Project Analysis Course.

Ren, H., Gao, W., 2010. A MILP model for integrated plan and evaluation of distributed energy systems, Applied Energy, vol. 87, n. 3, pp.1001-1014.

Romero, A., Carvalho, M., Millar, D. L., 2014. Application of a polygeneration optimization technique for a hospital in Northern Ontario, Transactions of the Canadian Society of Mechanical Engineering, vol. 1.

Rubio-Maya, C., Uche, J., Martinez, A., 2011. Sequential optimization of a polygeneration plant, Energy Conversion and Management, vol. 52, n. 8–9, pp. 2861–2869.

Serra, L.M. et al, 2009. Polygeneration and efficient use of natural resources, Energy, vol. 34, pp. 575-586.

SOLARTECH. Tenologia de energia limpa. Disponivel em: <http://www.solartechbr.com.br/>. Acesso em 24/12/2013.

Shang, Z., Kokossis, A., 2005. A systematic approach to the synthesis and design of flexible utility systems, Chemical Engineering Science, vol. 60, pp. 4431-4451.

Tavares, C., 2009. Proposta de regulamento de desempenho termo-energético de edificações para a cidade de João Pessoa – PB. Uma Aplicação à Estação Ciência, Cultura e Artes. Dissertação de Mestrado, Departamento de Engenharia Urbana e Ambiental, Universidade Federal da Paraíba. Disponível em: <http://bdtd.biblioteca.ufpb.br/tde_busca/arquivo.php?codArquivo=226>. Acesso em 17/02/2014.

TUMA, 2013. Aquecedor solar para hospital. Grandes obras de aquecimento solar para hospitais. Disponível em: <http://www.aquecimentosolartuma.com.br/hospitais>. Acesso em 24/12/2013.

Yokoyama, R., Hasegawa, Y., Ito, K., 2002. A MILP decomposition approach to large scale optimization in structural design of energy supply systems, Energy Conversion and Management, vol. 43, n. 6, pp. 771-790.

Ziher, D., Poredos, A., 2006. Economics of a trigeneration system in a hospital, Applied Thermal Engineering, vol. 26, n. 7, pp. 680-687.

Published

2014-04-13

How to Cite

Carvalho, M., Romero, A., & Millar, D. (2014). BIOMASS AND SOLAR THERMAL ENERGY IN THE SYNTHESIS AND OPTIMIZATION OF POLYGENERATION SYSTEMS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2193

Issue

Section

Anais