OTIMIZAÇÃO DO COMPRIMENTO DE COLETORES PARABÓLICOS LINEARES EM SISTEMAS SOLAR TERMOELÉTRICOS

Authors

  • Milton Matos Rolim Gerência Regional de Educação Sertão do Araripe
  • Naum Fraidenraich Universidade Federal de Pernambuco
  • Olga de Castro Vilela Universidade Federal de Pernambuco

DOI:

https://doi.org/10.59627/cbens.2014.2215

Keywords:

Solar Energy, Solar Concentrator, Parabolic Trough, Collector length

Abstract

This paper presents an optimization study of the efficiency of parabolic trough collectors, regarding the configuration of rows (length of row). It have been simulated row configurations from 1 up to 55 collectors of the model LS - 2 ( 47.1 m to 2590.5 m ) in series, as arranged in a solar thermal power plant . The variation of the conversion efficiency of solar energy into net electricity (gross energy less electricity for pumping along the row ) is studied. The influence of the length of the row of collectors cannot be overstated. Rows very short do not take advantage of lower radiation values due to the need to reduce the flow of heat transfer fluid and, consequently, the exchange coefficient, while very long rows, increase excessively the pressure drop in the flow. It is shown that there is an optimum value, but with a broad plateau around this maximum, in which the variation in efficiency due to the length of the row is very small, which allows flexibility in the choice of this length in order to adjust the other operational variables.

Downloads

Author Biographies

Naum Fraidenraich, Universidade Federal de Pernambuco

Departamento de Energia Nuclear

Olga de Castro Vilela, Universidade Federal de Pernambuco

Departamento de Energia Nuclear

References

Dudley, V.; Kolb, G. J; Mahoney, A. R.; Mancini, T. R.; Matthews, C. W.; Sloan, M.; Kearney, D., 1994. Test Results SEGS LS-2 Solar Collector. SAND 94-1884, Sandia National Laboratories, Albuquerque, NM.

Fraidenraich, N.; Gordon, J. M.; Lima R. C. F., 1997. Improved Solutions for Temperature and Thermal Power Delivery Profiles in Linear Solar Collectors. Solar energy Vol. 61 No. 3. pp 141 – 145.

Fox, R. W; MacDonald, A.T. Introdução à mecânica dos fluidos. Editora Guanabara, Rio de Janeiro, 1988.

Kelly, B. and Kearney, D., 2002. Parabolic Trough Solar System Piping Model. Final Riport. National Renewable Energy Laboratory. Disponível em http://www.nrel.gov/csp/troughnet/pdfs/40165.pdf, acessado em 26 de dezembro de 2013.

Kreith, F; Kreider, J.F.. Principles of Thermodynamics and Heat Transfer Applied to Solar Energy. In Solar Energy Handbook, Kreith, F and Kreider, J.F., editors. New York: McGraw-Hill, 1980.

Miller, R. W. Flow measurement Engineering Handbook. New York: MacGraw-Hill, 1983.

NREL, 2013. National Renewable Energy Laboratory. System Advisor Model - SAM. Programa de simulação gratuito. Disponível em https://sam.nrel.gov/content/downloads. Acessado em setembro de 2013.

Rabl, A., 1985. Active Solar Colletors and Their Applications. Oxford University Press. New York.

Rolim, M. M., Fraidenraich, N., Vilela, O. C., 2012. Otimização de Parâmetros Construtivos de Coletores Parabólicos Lineares. IV Congresso Brasileiro de Energia Solar e V Conferencia Latino-Americana da ISES – São Paulo, 18 a 21 de setembro de 2012

Rolim, M. M., 2007. Modelagem Analítica de Geração Solar Térmica de Eletricidade, com Concentradores Parabólicos de Foco Linear. Tese de Doutorado, DEN/UFPE, Recife.

Published

2014-04-13

How to Cite

Rolim, M. M., Fraidenraich, N., & Vilela, O. de C. (2014). OTIMIZAÇÃO DO COMPRIMENTO DE COLETORES PARABÓLICOS LINEARES EM SISTEMAS SOLAR TERMOELÉTRICOS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2215

Issue

Section

Anais