SIMULATION MODEL OF A SOLAR-ELECTRIC PLANT USING THE SOFTWARE TRNSYS

Authors

  • Ivan Magela Corgozinho Centro Federal de Educação Tecnológica de Minas Gerais
  • José Henrique Martins Neto Centro Federal de Educação Tecnológica de Minas Gerais
  • Alan Alves Corgozinho Universidade Federal de Minas Gerais

DOI:

https://doi.org/10.59627/cbens.2014.2258

Keywords:

Solar-electric, parabolic trough collectors, thermal storage

Abstract

In this work, it’s developed a simulation model of a 1MW generation system from solar source with concentration and thermal to electric energy conversion obtained into a Rankine cycle. The model was developed in the software TRNSYS Simulation Studio in a period of 365 days of a typical meteorological year for the city of Salvador- BA using the Meteonorm data base in time intervals of 6 minutes. The technology applied in the simulation was the parabolic trough technology using thermal oil as working fluid and energy storage for 3 hours of operation in a two- tank arrangement of molten salt. Controls for each step one of the main stages of the process were applied to ensure the prescribed operating conditions. Among the results, highlight the overall average efficiency of the system of 20,4% and the capacity factor of 29.5%.

Downloads

Author Biographies

Ivan Magela Corgozinho, Centro Federal de Educação Tecnológica de Minas Gerais

Departamento de Engenharia de Energia

José Henrique Martins Neto, Centro Federal de Educação Tecnológica de Minas Gerais

Departamento de Engenharia de Energia

Alan Alves Corgozinho, Universidade Federal de Minas Gerais

Departamento de Física

References

Agência Internacional de Energia, 2010. Technology Roadmap - Concentrating Solar Power.

Andújar, J.M., Rosa, F., Geyer, M., 1991. CESA-I thermal storage system evaluation. Solar Energy Engineering, Vol. 46, pp. 305–312.

Bergman, T. L., Lavine, A. S., Incropera, F. P., Dewitt, D. P, 2011. Fundamentals Of Heat And Mass Transfe, John Wiley & Sons.

Duffie, A. J., Beckman, W. A., 2013. Solar Engineering of Thermal Processes 4 Ed., Wiley.

Herrmann, U., Kearney, D.W., 2002. Survey of thermal energy storage for parabolic trough power plants, Solar Energy Engineering. Vol. 124, pp.145–152.

Kearney, D.W., Herrmann, U., Nava, P., Kelly, B., Mahoney, R.,Pacheco, J., Cable, R., Potrovitza, N., Blake, D., Price, H., 2003.Assessment of a molten salt heat transfer fluid in a parabolic trough solar field. Solar Energy Engineering, Vol. 125, pp. 170–176.

Kolb, G.J., 2006. Performance analysis of thermocline energy storage. ASME International Solar Energy Conference, Denver.

Lovegrove, K., Luzzi, A., Soldiani, I., Kreetz, H., 2004. Developing ammonia based thermochemical energy storage for dish power plants, Solar Energy Engineering, Vol. 76, pp. 331–337.

Ministério de Ciência e Tecnologia, 2013. Disponível em: <http://www.mct.gov.br/index.php/content/view/346161.html>, acessado em 21 de novembro de 2013.

Odeh, S.D., Morrison, G.L., Behnia, M., 1998. Modelling of parabolic trough direct steam generation solar collectors, Solar Energy Engineering, Vol. 62, pp. 395–406.

Yang, Z., Garimella, S.V., 2010. Thermal analysis of solar thermal energy storage in a molten-salt thermocline, Solar Energy Engineering, Vol.84, pp. 974–985.

Zalba, B., Marín, J. M., Cabeza, L. F., 2003.Mehling, H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, Vol. 23, pp. 251–283.

Zaversky, F., García-Barberena, J., Sánchez, M., Astrain,D., 2013. Transient molten salt two-tank thermal storage modeling for CSP performance simulations Solar Energy Engineering, Vol. 93, pp. 294–311.

Published

2014-04-13

How to Cite

Corgozinho, I. M., Martins Neto, J. H., & Corgozinho, A. A. (2014). SIMULATION MODEL OF A SOLAR-ELECTRIC PLANT USING THE SOFTWARE TRNSYS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2014.2258

Issue

Section

Anais