ENERGY PERFORMANCE ANALYSIS OF A SOLAR PLANT WITH MONO AND BIFACIAL PHOTOVOLTAIC MODULES UNDER DIFFERENT TYPES OF GROUND

Authors

  • Douglas Lamas Dias Universidade Federal de Santa Catarina
  • Giuliano Arns Rampinelli Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.59627/cbens.2024.2361

Keywords:

Photovoltaic Solar Energy, Photovoltaic Systems, Bifacial Modules

Abstract

Photovoltaic systems are technologically mature, reliable, economically competitive and sustainable. This paper presents an experimental analysis of the energy performance of a solar plant with mono- and bifacial photovoltaic modules on different types of ground (white sand, white gravel and dark gravel). The solar plant consists of a bifacial photovoltaic system with a nominal power of 6.36 kWp and a monofacial photovoltaic system of 5.52 kWp and is located at the Centre for Science, Technology and Health (CTS) of the Federal University of Santa Catarina (UFSC). The energy performance analysis is based on data measured and collected from the solar plant's monitoring platform and the INMET weather station database. The analysis period runs from February/23 to January/24. Using meteorological data from the INMET, the monthly global solar irradiation on the tilted plane and the clearness index were determined for the city of Araranguá/SC. From the solar plant's electrical data, the yields of the photovoltaic arrays, the performance ratio and the bifacial gain of the photovoltaic systems were determined. The photovoltaic system with bifacial modules showed superior energy performance compared to the photovoltaic system with monofacial modules. The bifacial gain of the bifacial modules on different types of ground was determined and it was found that the average bifacial gain was 9.81%, 8.34% and 4.87% respectively for white sand, white gravel and dark gravel.

Downloads

Author Biographies

Douglas Lamas Dias, Universidade Federal de Santa Catarina

Programa de Pós-Graduação em Energia e Sustentabilidade.

Giuliano Arns Rampinelli, Universidade Federal de Santa Catarina

Departamento de Energia e Sustentabilidade.

References

ABSOLAR, 2023. Infográfico ABSOLAR, https://www.absolar.org.br/mercado/infografico/.

A. Allouhi, R. Saadani, T. Kousksou, R. Saidur, A. Jamil, M. Rahmoune, 2016. Grid-connected PV systems installed on institutional buildings: Technology comparison, energy analysis and economic performance, Energy and Buildings, Volume 130, Pages 188-201, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2016.08.054.

Blasques, L. C. M., Vale, S. B., Pinho, J. T., 2007. Sistema Solar Fotovoltaico para Geração de Eletricidade na Estação Científica Ferreira Penna do Museu Paraense Emílio Goeldi, Caxiuanã – Pará, I CBENS - I Congresso Brasileiro de Energia Solar, Fortaleza.

Burger, B., Rüther, R., 2006. Inverter sizing of grid-connected photovoltaic systems in the light of local solar resource distribution characteristics and temperature, Solar Energy, vol. 80, n. 1, pp. 32-45.

Chris Deline, Silvana Ayala Peláez, Bill Marion, Bill Sekulic, Michael Woodhouse, and Josh Stein, 2019. Bifacial PV System Performance: Separating Fact from Fiction, National Renewable Energy Laboratory (NREL), https://www.nrel.gov/docs/fy19osti/74090.pdf.

Duffie, J. A., Beckman, W. A., 1991. Solar Engineering of Thermal Processes, John Wiley & Sons. Emmanuel Kymakis, Sofoklis Kalykakis, Thales M. Papazoglou, 2009. Performance analysis of a grid connected photovoltaic park on the island of Crete, Energy Conversion and Management, Volume 50, Issue 3,Pages 433-438, ISSN 0196-8904,https://doi.org/10.1016/j.enconman.2008.12.009.

Hays, G.C., Ashworth, J.S., Barnsley, M.J., Broderick, A.C., Emery, D.R., Godley, B.J., Henwood, A. and Jones, E.L. (2001), The importance of sand albedo for the thermal conditions on sea turtle nesting beaches. Oikos, 93: 87-94. https://doi.org/10.1034/j.1600-0706.2001.930109.x

IEA (2023). CO2 Emissions in 2022, IEA, Paris https://www.iea.org/reports/co2-emissions-in-2022, License: CC BY 4.0.

IEA (2023), Tracking Clean Energy Progress 2023, IEA, Paris https://www.iea.org/reports/tracking-clean-energy- progress-2023, Licença: CC BY 4.0.

IEA Photovoltaic Power Systems Programme, 2021. Bifacial Photovoltaic : Two Sides are Better than One, https://iea-pvps.org/events/bifacial-photovoltaic-two-sides-are-better-than-one/.

João F. Escobedo, Eduardo N. Gomes, Amauri P. Oliveira, Jacyra Soares, Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil, 2009. Applied Energy, Volume 86, Issue 3, Pages 299-309, ISSN 0306-2619, https://doi.org/10.1016/j.apenergy.2008.04.013.

Joji Johnson, S. Manikandan, 2023. Experimental study and model development of bifacial photovoltaic power plants for Indian climatic zones, Energy, Volume 284, 128693, ISSN 360-5442, https://doi.org/10.1016/j.energy.2023.128693.

Marzia Alam, Mehreen Saleem Gul, Tariq Muneer, 2023. Performance analysis and comparison between bifacial and monofacial solar photovoltaic at various ground albedo conditions, Renewable Energy Focus, Volume 44, Pages 295-316, ISSN 1755-0084, https://doi.org/10.1016/j.ref.2023.01.005.

Mahmood K, Hussain A, Arslan M, Tariq B, 2023. Experimental Investigation of Impact of Cool Roof Coating on Bifacial and Monofacial Photovoltaic Modules. Eng. Proc; 45(1):38. https://doi.org/10.3390/engproc2023045038

National Renewable Energy Laboratory (NREL), 2021. Life Cycle Greenhouse Gas Emissions from Electricity Generation: Update, https://www.nrel.gov/analysis/life-cycle-assessment.html?qls=QMM_12345678.0123456789.

Oliveski, R. C., 2000. Análise Numérica e Experimental dos Campos de Temperatura e Velocidade em Armazenadores Térmicos, Tese de Doutorado, PROMEC, UFRGS, Porto Alegre.

Pisello AL, Pignatta G, Castaldo VL, Cotana F. Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement. Sustainability. 2014; 6(8):4706-4722. https://doi.org/10.3390/su6084706.

P.M. Congedo, M. Malvoni, M. Mele, M.G. De Giorgi, 2013. Performance measurements of monocrystalline silicon PV modules in South-eastern Italy, Energy Conversion and Management, Volume 68, Pages 1-10, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2012.12.017.

Photovoltaic System Performance–Part 1: Monitoring, 2021, [online] Available: https://webstore.iec.ch/publication/65561.

Rahimat O. Yakubu, David A. Quansah, Lena D. Mensah, Wisdom Ahiataku-Togobo, Peter Acheampong, Muyiwa S. Adaramola, 2023. Comparison of ground-based and floating solar photovoltaic systems performance based on monofacial and bifacial modules in Ghana., Energy Nexus, 100245, ISSN 2772-4271, https://doi.org/10.1016/j.nexus.2023.100245.

Solar Energy Technologies Office. Solar Photovoltaic Technology Basics, Office of Energy Efficiency and Renewable Energy, https://www.energy.gov/eere/solar/solar-photovoltaic-technology-basics.

Solar Radiation on a Tilted Surface, 2019.

Stuart Bowden e Christiana Honsberg..https://www.pveducation.org/pvcdrom/properties-of-sunlight/solar-radiation-on-a-tilted-surface.

Silva, Jorge Luiz de Castro e. Estatística e Probabilidade / Jorge Luiz de Castro e Silva, Maria Wilda Fernandes, Rosa Lívia Freitas de Almeida . – 3. ed. – Fortaleza: EdUECE, 2015. 125 p. : il. ; 20,0cm x 25,5cm. (Computação) Inclui bibliografia. ISBN: 978-85-7826-439-0 1. Estatística. 2. Matemática – Probabilidade I. Fernandes, Maria Wilda. II. Almeida, Rosa Lívia de. III. Título. CDD 519

T. Joge, Y. Eguchi, Y. Imazu, I. Araki, T. Uematsu and K. Matsukuma, "Applications and field tests of bifacial solar modules," Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002., New Orleans, LA, USA, 2002, pp. 1549-1552, doi: 10.1109/PVSC.2002.1190908.

Published

2024-09-20

How to Cite

Dias, D. L., & Rampinelli, G. A. (2024). ENERGY PERFORMANCE ANALYSIS OF A SOLAR PLANT WITH MONO AND BIFACIAL PHOTOVOLTAIC MODULES UNDER DIFFERENT TYPES OF GROUND. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2361

Issue

Section

Anais