PRELIMINARY ANALYSIS OF SHORT-TERM VARIABILITY OF SOLAR RESOURCE IN ARGENTINA USING SAVER-NET DATA
DOI:
https://doi.org/10.59627/cbens.2024.2390Keywords:
Fluctuations, GHI, Solar EnergyAbstract
Solar irradiance variability introduces limitations to photovoltaic (PV) solar energy production because it hinders energy dispatch. Therefore, their quantification is important for large-scale development of PV systems and their relative contribution to the electrical grid. Argentina has a significant potential for solar energy generation, with anextensive territory receiving an average annual irradia tion of 5 kWh/m2 /day. Furthermore, it is supported by public policies and regulations that promote the transition to renewable energy sources. This study quantified short -term variability (minute, 10-minute, and hourly) using the standard deviation of changes in the clear sky index (kc). Time series for 2019 and 2020 were analyzed at six stations from the Argentine solar radiation network Saver-Net. Average nominal variabilities of 0.09, 0.13, and 0.15 was found for 1 min, 10 min, and 1 h, respectively. These values suggest an intermediate variability in solar resources across the territory.
Downloads
References
Alonso-Suárez, R., David, M., Branco, V., Lauret, P., 2020. Intra-day solar probabilistic forecasts including local short-term variability and satellite information. Renew. Energy 158, 554–573. https://doi.org/10.1016/j.renene.2020.05.046
Aristegui, R., Iturbide, P., Stern, V., Lell, J., Righini, R., 2019. Variabilidad de corto plazo y valores extremos de la irradiancia solar en La Pampa húmeda argentina. Av. En Energ. Renov. Medio Ambiente - AVERMA 23, 19–30.
C. Raichijk, H.G.G. y R.R., 2007. VARIABILIDAD ESPACIAL DE LA HELIOFANÍA (DURACIÓN DE LA INSOLACIÓN) EN LA PAMPA HÚMEDA ARGENTINA, URUGUA Y Y SUR DEL BRASIL. Congr. Bras. Energ. Sol. - CBENS.
CMP 21 Piranómetro secundarios estándares - Kipp & Zonen [WWW Document], n.d. URL https://www.kippzonen.es/Product/211/CMP21-Pirano metro (accessed 5.22.23).
Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter, B., Pause, C., Dowling, T., Bugliaro, L., 2016. The libRadtran software package for radiative transfer calculations (version 2.0.1). Geosci. Model Dev. 9, 1647–1672. https://doi.org/10.5194/gmd-9-1647-2016
ESMAP, 2019. Global Solar Atlas 2.0. Wash. DC Worldbank. Giacosa, G., Alonso-Suárez, R., Laguarda, A., 2016. FILTRADO ESPACIAL DE LA VARIABILIDAD DEL RECURSO SOLAR: APLICACIÓN A LA GENERA CIÓN FOTOVOLTAICA EN URUGUA Y. Av. En Energ. Renov. Medio Ambiente - AVERMA 20, 47–57.
Grossi Gallegos, H., 2021. SOBRE LA NECESIDAD DEL MANTENIMIENTO DE LA MEDICIÓN DEL RECUR S O SOLAR EN ARGENTINA.
Hoff, T.E., Perez, R., 2012. Modeling PV fleet output variability. Sol. Energy, Progress in Solar Energy 3 86, 2177–218 9. https://doi.org/10.1016/j.solener.2011.11.005
Hoff, T.E., Perez, R., 2010. Quantifying PV power Output Variability. Sol. Energy 84, 1782–179 3. https://doi.org/10.1016/j.solener.2010.07.003
Lusi, A.R., Orte, F., Alonso-Suárez, R., D’Elía, R., Wolfram, E., 2023. EVALUACIÓN DE LOS MODELOS DE RADIACIÓN SOLAR GLOBAL HELIOSAT-4 Y MCCLEAR EN DOS SITIOS DE ARGENTINA. An. AFA 34, 76–81.
Mayer, B., Kylling, A., 2005. Technical note: The libRadtran software package for radiative transfer calculations - description and examples of use. Atmospheric Chem. Phys. 5, 1855–1877. https://doi.org/10.5194/acp-5-1855-2005
Ministerio de economía, 2023. Energías Renovables: se sumaron más de 173 MW al sistema eléctrico en el segundo trimestre del año [WWW Document]. Argentina.gob.ar. URL https://www.argentina.gob.ar/noticias/energias-renovables-se-sumaron-mas-de-173-mw-al-sistema-electrico-en-el-segundo-trimestre (accessed 10.17.23).
Ohmura, A., Dutton, E.G., Forgan, B., Fröhlich, C., Gilgen, H., Hegner, H., Heimo, A., König -Langlo, G., McArthur, B., Müller, G., Philipona, R., Pinker, R., Whitlock, C.H., Dehne, K., Wild, M., 1998. Baseline Surface Radiation Network (BSRN/WCRP): New Precision Radiometry for Climate Research. Bull. Am. Meteorol. Soc. 79, 2115–2136. https://doi.org/10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2
Orte, F., Wolfram, E., Luccini, E., D’Elia, R., Lusi, A., Pallotta, J., Nollas, F., Carmona, F., Papandrea, S., Cabezas, M.D. , Benítez, G.C., Mizuno, A., 2022. RED DE MONITOREO DE LA IRRADIANCIA SOLAR UV-TOTAL EN ARGENTINA “SAVER-NET.” METEOROLOGICA 47. https://doi.org/10.24215/1850468Xe016
Perez, R., David, M., Hoff, T.E., Jamaly, M., Kivalov, S., Kleissl, J., Lauret, P., Perez, M., 2016. Spatial and Temporal Variability of Solar Energy. Found. Trends® Renew. Energy 1, 1–44. https://doi.org/10.1561/2700000006
Skartveit, A., Olseth, J.A., 1992. The probability density and autocorrelation of short -term global and beam irradiance. Sol. Energy 49, 477–487. https://doi.org/10.1016/0038-092X(92)90155-4
Suehrcke, H., McCormick, P.G., 1989. Solar radiation utilizability. Sol. Energy 43, 339–345. https://doi.org/10.1016/0038-092X(89)90104-7
Wolfram, E., Orte, F., Pallotta, J., D’Elía, R., Libertelli, C., Luccini, E., Porello, N., Ubogui, J., 2018. ANÁLISIS PRELIMINA R DE LA TASA DE CAMBIO A CORTO PLAZO DE LA IRRADIANCIA SOLAR CON APLICACIONES EN ENERGÍA FOTOVOLTAICA 22, 49–56.