OPTIMIZATION OF LINEAR MODELS FOR ESTIMATION OF GLOBAL SOLAR IRRADIANCE THROUGH REMOTE SENSING PRODUCTS IN BOTUCATU (SP) - BRAZIL
DOI:
https://doi.org/10.59627/cbens.2024.2411Keywords:
Modelagem da Radiação Solar, Previsão da Energia Solar, Regressão Linear MultivariadaAbstract
There is a consensus that knowledge about solar irradiance levels obtained on the Earth's surface through automatic sensors represents the most desirable situation. However, the construction of solarimetric stations involves a high financial contribution, which makes it difficult to implement this scenario in many locations in Brazil. The aim of this study was to create three linear regression models, with different input parameter combinations, to estimate hourly global solar irradiance on the Earth's surface, using information obtained by the Global Land Data Assimilation System 2.1. An assessment was carried out to determine which combination of independent linear regression variables would best fit the measurements collected at the School of Agricultural Sciences (UNESP) in Botucatu (SP) - Brazil, during the period 2020-2022. Therefore, three linear regression models were created in Python using global solar irradiance, provided by the remote sensing product, atmospheric transmissivity index and solar elevation, as independent variables, on an hourly time scale. The evaluation of the linear regression models was based on the statistical indicators MBE, rMBE, RMSE, rRMSE and R², using as a reference measurement obtained by a pyranometer on the Earth's surface. The first linear fit combination produced an R² of 0.83, with an rMBE of 18.13% and an rRMSE of 26.63%. Likewise, the second linear adjustment combination generated an R² of 0.88, with an rMBE of 15.69% and an rRMSE of 26.31%. Finally, the third linear adjustment combination presented an R² of 0.90, with an rMBE of 15.52% and an rRMSE of 20.75%. Using the solar irradiance provided by the remote sensing product, atmospheric transmissivity index and solar elevation, as independent variables, created the linear regression model that better understood the atmospheric and astronomical processes that occurred, allowing to obtain estimates of solar irradiance on te Earth's surface with greater precision.
Downloads
References
Calça, M. V. C.; Raniero, M. R.; Fernando, D. M. Z.; Rodrigues, S. A.; Dal Pai, A., 2019. Outliers Detection in a Quality Control Procedure for Measurements of Solar Radiation. IEEE Latin America Transactions, vol. 17, n. 11, pp. 1815-1822.
Chein, F., 2019. Introdução aos modelos de regressão linear. Brasília - DF: Escola Nacional de Administração Pública - ENAP. 76 p.
Codato, G.; Oliveira, A. P.; Soares, J.; Escobedo, J. S.; Gomes, E. N.; Dal Pai, A., 2008. Global and diffuse solar irradiances in urban and rural areas in southeast Brazil. Theoretical and Applied Climatology, vol. 93, pp. 57-73.
Dal Pai, A.; Escobedo, J. F.; Dal Pai, E.; Oliveira, A. P.; Soares, J.; Codato, G., 2016. MEO shadowring method for measuring diffuse solar irradiance: Corrections based on sky cover. Renewable Energy, vol. 99, pp. 754-763.
Escobedo, J. F.; Gomes, E. N.; Oliveira, A. P.; Soares, J., 2009. Modeling hourly and daily fractions of UV, PAR and NIR to global solar radiation under various sky conditions at Botucatu, Brazil. Applied Energy, vol. 86, pp. 299-309.
Flumignan, D. L.; Rezende, M. K. A.; Comunello, E.; Fietz, C. R., 2018. Empirical methods for estimating reference surface net radiation from solar radiation. Engenharia Agrícola, vol. 38, n. 1, pp. 32-37. Disponível em: https://doi.org/10.1590/1809-4430-Eng.Agric.v38n1p32-37/2018.
Franco, J. R.; Dal Pai, E.; Calça, M. V. C.; Raniero, M. R.; Dal Pai, A.; Sarnighausen, V. C. R.; Román, R. M. S., 2023. Atualização da normal climatológica e classificação climática de Köppen para o município de Botucatu - SP. Irriga - Brazilian Journal of Irrigation and Drainage, vol. 28, n. 1, pp. 77-92.
Gorelick. N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R., 2017. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, vol. 202, pp. 18-27.
IBGE., 2022. Panorama da Cidade de Botucatu (SP) - Brasil. Rio de Janeiro: IBGE - Instituto Brasileiro de Geografia e Estatística. Disponível em: https://cidades.ibge.gov.br/brasil/sp/botucatu/panorama. Acesso em: 02 ago. 2022.
IQBAL, M., 1983. An Introduction to Solar Radiation. Ontario: Academic Press Canada.
NASA., 2021. README document for NASA GLDAS version 2 data products. Washington - EUA: NASA - National Aeronautics and Space Administration. Disponível em: https://hydro1.gesdisc.eosdis.nasa.gov/data/GLDAS/GLDAS_NOAH025_3H.2.1/doc/README_GLDAS2.pdf. Acesso em: 22 out. 2023.
Pashiardis, S.; Kalogirou, S. A., 2016. Quality control of solar shortwave and terrestrial longwave radiation for surface radiation measurements at two sites in Cyprus. Renewable Energy, vol. 96, pp. 1015-1033. Disponível em: https://doi.org/10.1016/j.renene.2016.04.001.
Pereira, E. B.; Martins, F. R.; Gonçalves, A. R.; Costa, R. S.; Lima, F. L.; Rüther, R.; Abreu, S. L.; Tiepolo, G. M.; Pereira, S. V.; Souza, J. G., 2017. Atlas Brasileiro de Energia Solar. 2 ed., São José dos Campos: Instituto Nacional de Pesquisas Espaciais. Disponível em: http://doi.org/10.34024/978851700089.
Rincón. A.; Jorba, O.; Frutos, M.; Alvarez, L.; Barrios, F. P.; González, J. A., 2018. Bias correction of global irradiance modelled with weather and research forecasting model over Paraguay. Solar Energy, vol. 170, pp. 201-211.
Scikit-Learn., 2022. Model Evaluation. Documentation. Disponível em: https://scikit-learn.org/0.22/modules/model_evaluation.html#mean-absolute-error. Acesso em: 13 nov. 2022.
Silva, M. B. P.; Escobedo, J. F.; Santos, C. M.; Rossi, T. J.; Silva, S. H. M. G., 2017. Performance of the Angstrom-Prescott Model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in Botucatu/SP/Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, vol. 160, pp. 11-27.
WMO., 2012. Guide to Meteorological Instruments and Methods of Observation. Geneva: WMO - World Meteorological Organization, n. 8.