DATA SOURCE SENSITIVITY IN SOLAR RADIATION TYPICAL METEOROLOGICAL YEAR (TMY) FOR FIVE DIFFERENT REGIONS OF BRAZIL
SENSIBILIDADE À BASE DE DADOS PARA CINCO REGIÕES DIFERENTES DO BRASIL
DOI:
https://doi.org/10.59627/cbens.2024.2422Keywords:
Typical Meteorological Year, Solar Energy, TMYAbstract
In this article, we examine how sensitive the methodology for calculating a "Typical Meteorological Year" (TMY) is to changes in the source of the meteorological data series and the weighting factors used. Three different sources of meteorological data - ground-based observations, modeled satellite-derived data, and ERA5 reanalysis data - were used to determine the sensitivity of the TMY to the data source. The TMY was created for five different regions in Brazil using 13 years of hourly data for 10 meteorological indices consisting of maximum, minimum, and average air temperature, relative humidity, maximum and average wind speed, global total horizontal radiation, and normal direct solar radiation. The study shows that the source of the meteorological data plays little role in determining the "most typical" months. The typicality of the months was consistent even when data sources as diverse as in situ and modeled data were used. The study also shows that the exact choice of weighting scheme for the meteorological data source is relatively arbitrary, if not irrelevant. This is because meteorological parameters are not independent variables and therefore often represent redundant information. A few independent parameters are sufficient to produce a good TMY, and adding several interdependent parameters does not improve the quality of the TMY produced.
Downloads
References
ABSOLAR (2023) - https://www.absolar.org.br/mercado/infografico/
Almeida, M.A.M.; Vasconcellos, V.N. (2019) - Development of the typical meteorological year for the Copacabana INMET meteorological station in the city of Rio de Janeiro (in Portuguese), XV Brazilian and Latin American Thermal Comfort Meeting, João Pessoa, September, 2019.
ANEEL (2023) - National Electric Energy Agency statistics – open data - https://dadosabertos.aneel.gov.br/
ASHRAE (2023) - International weather for energy calculations (IWEC Weather Files) User’s Manual, Version 1.1.
Bonini, V. R. B.; Starke, A. R.; Lemos, L.F.L. and Colle, S. (2022) - IX Brazilian Solar Energy Congress – Florianópolis, Brazil (https://anaiscbens.emnuvens.com.br/cbens/issue/view/3).
Casagrande, M., S. G. ; Martins, F.R. ; Rosário, N. M. E. ; Lima, F. J. L. ; Goncalves, A. R.; Costa, R. S.; Zarzur, A. M.; Pes, M. P. ; Pereira, E. B. (2021) - Numerical Assessment of Downward Incoming Solar Irradiance in Smoke Influenced Regions—A Case Study in Brazilian Amazon and Cerrado. Remote Sensing, v. 13, p. 4527-4556, doi: 10.3390/rs13224527.
Chan, A.L., Chow, T.T., Fong, S.K. and Lin, J.Z. (2006) - Generation of a typical meteorological year for Hong Kong. Energy Conversion and management, 47(1), pp.87-96, doi: 10.1016/j.enconman.2005.02.010
Finkelstein, J.M. and Schafer, R.E. (1971) - Improved goodness-of-fit tests. Biometrika, 58(3), pp.641-645, 10.2307/2334400.
Hall, I.J., Prairie, R.R., Anderson, H.E. and Boes, E.C. (1978) - Generation of a typical meteorological year (No. SAND-78-1096C; CONF-780639-1). Sandia Labs., Albuquerque, NM (USA).
Huang, Y, J; Su, F.; Seo, D.; Krarti, D. (2014) - Development of 3012 IWEC2 weather files for international locations (RP-1477), ASHRAE Transactions, vol. 120, no. 1
Huld, T; Paietta, E; Zangheri, P and Pascua, P. (2018) - Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data, Atmosphere 2018, 9, 53; doi:10.3390/atmos9020053.
IEA (2022), International Energy Agency, Renewables 2022, IEA License: CC BY 4.0, Paris https://www.iea.org/reports/renewables-2022, (accessed on May 9, 2023),
Luiz, E.W.; Martins, F.R.; Pereira, E.B. and Schuch, N.J. (2012) - Determinação de um Ano Meteorológico Típico para Florianópolis SC, Determination of a Typical Meteorological Year for Florianópolis SC, V Brazilian Solar Energy Congress and V Latin American Conference of ISES – São Paulo, September 18 to 21, 2012
Machado, R. D.; Bravo, G.; Starke, A.; Lemos, L. and Colle, S. (2019) - Generation of 441 typical meteorological year from INMET stations – Brazil, ISES SWC2019 / SHC2019 Conference Proceedings, doi: 10.18086/swc.2019.45.02.
Marion, W. and Urban, K. (1995) - User's Manual for TMY2's (Typical Meteorological Years) - NREL/TP-463-7668, doi: 10.2172/87130.
Munõz Sabater, J., (2019) - ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), doi: 10.24381/cds.e2161bac
Pereira, E. B.; Martins, F. R.; Gonçalves, A. R.; Costa, R. S.; Lima, F. L.; Rüther, R.; Abreu, S. L.; Tiepolo, G. M.; Pereira, S. V.; Souza, J. G. (2017) - Atlas brasileiro de energia solar. 2.ed. São José dos Campos: INPE, 2017. 80p., doi: 10.34024/978851700089.
Skeiker, K. and Ghani, B.A. (2009) - A software tool for the creation of a typical meteorological year. Renewable Energy, 34(3), pp.544-554, doi: 10.1016/j.renene.2008.05.046.
Skeiker, K. (2004) - Generation of a typical meteorological year for Damascus zone using the Filkenstein–Schafer statistical method. Energy Conversion and Management, 45(1), pp.99-112, doi: 10.1016/S0196-8904(03)00106-7.
Su F.; Huang J.; Xu T. and Zhang, C. (2009) - An evaluation of the effects of various parameter weights on typical meteorological years used for building energy simulation. Building Simulation, 2009, 2(1): 19-28, doi: 10.1007/s12273-009-9106-3.
Wilcox, S. and Marion, W. (2008) - User’s manual for TMY3 data sets (Revised). Technical Report NREL/TP-581-43156.