TECHNICAL AND FINANCIAL FEASIBILITY ANALYSIS OF RETROFIT IN STREET LIGHTING SYSTEMS WITH SOLAR PHOTOVOLTAIC SOURCE
DOI:
https://doi.org/10.59627/cbens.2024.2424Keywords:
Public Lighting, Grid-Connected Photovoltaic System, Independent Photovoltaic SystemAbstract
The use of renewable energy sources and the implementation of efficiency actions are recurring solutions in the Energy area to address environmental and sustainability issues. The confluence of energy efficiency through public lighting (IP) retrofits and photovoltaic (PV) power generation can ensure a more efficient and sustainable IP park. Until January 2022, in Brazil, IP with solar photovoltaic sources was restricted to autonomous systems with batteries, a solution that was little implemented and widespread, and from 2022, through Law 14,300, the implementation of photovoltaic systems connected to the grid began. (SFCR) with electrical energy compensation for IP customers. As it is a recent and little discussed solution, this paper seeks to analyze the technical and financial feasibility of an IP system with SFCR based on a case study of a hypothetical public road. The retrofit of the IP system was validated using the DIALux software and the electrical supply of the IP system with the SFCR was analytically sized using the expected performance technique. The results point to a 70% reduction in luminaire power with the proposed retrofit while maintaining illuminance. Additionally, the net present value method revealed financial viability for both solutions when applied individually or together.
Downloads
References
ABNT, 2012. NBR5101 – Iluminação pública – Procedimento, Rio de Janeiro.
ANEEL, 2019. Resolução Homologatória nº 2.590, de 13 de agosto de 2019 – Homologa os tempos a serem considerados para o consumo diário para fins de faturamento da energia elétrica destinada à iluminação pública e à iluminação de vias internas de condomínios, Brasília.
ANEEL, 2023. Resolução Homologatória nº 3.215, de 27 de junho de 2023 – Homologa o resultado da Revisão Tarifária Periódica – RTP de 2023 da Eletropaulo Metropolitana Eletricidade de São Paulo S.A. – Enel SP, Brasília.
ANEEL, 2023. Base de Dados das Tarifas das Distribuidoras de Energia Elétrica, Brasília. Disponível em: https://portalrelatorios.aneel.gov.br/luznatarifa/basestarifas#. Acesso em: 10/10/2023.
Brasil, 2022. Presidência da República. Secretaria Geral, Subchefia para Assuntos Jurídicos – Lei n° 14.300, de 06 de janeiro de 2022. Institui o marco legal da microgeração e minigeração distribuída, o Sistema de Compensação de Energia Elétrica (SCEE) e o Programa de Energia Renovável Social (PERS); altera as Leis nºs 10.848, de 15 de março de 2004, e 9.427, de 26 de dezembro de 1996 e dá outras providências, Brasília. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2022/lei/L14300.htm. Acesso em: 21/11/2022.
Campisi, D., Gitto, S., & Morea, D., 2018. Economic feasibility of energy efficiency improvements in street lighting systems in Rome, Journal of Cleaner Production, vol. 175, pp. 190–198.
Carli, R. Dotoli, M., Pellegrino R., 2018. A decision-making tool for energy efficiency optimization of street lighting, Computers Operations Research, vol 96, pp 223-235, ISSN 0305-0548.
Djuretic, A., Kostic, M., 2018. Actual energy savings when replacing high-pressure sodium with LED luminaires in street lighting, Energy, vol. 157, pp. 367-378.
Duman, A.C., Güler, O., 2019. Techno-economic analysis of off-grid photovoltaic LED road lighting systems: A case study for northern, central and southern regions of Turkey, Building and Environment, vol. 156, pp. 89-98, ISSN 0360-1323.
ELETROBRAS, 2023. Tabela Luminária LED para Iluminação Pública PROCEL, Rio de Janeiro. Disponível em: http://www.procelinfo.com.br/services/DocumentManagement/FileDownload.EZTSvc.asp?DocumentID={6C362041-7E2D-4219-AD60-85BBCFD5672C}&ServiceInstUID={46764F02-4164-4748-9A41-C8E7309F80E1}. Acesso em: 30/10/2023.
EPE, 2022. Balanço Energético Nacional 2022: Ano base 2021, Brasília.
EPE, 2022. Plano Decenal de Expansão de Energia de 2031, Brasília.
Garcia-Fernandez, B., & Omar, O., 2023. Integrated innovative solar lighting system for optimization of daylight utilization for public library in Alexandria, Egypt, Ain Shams Engineering Journal, vol. 14, iss. 1, art. 101819.
Greener, 2023. Estudo Estratégico Geração Distribuída Mercado Fotovoltaico, São Paulo. Disponível em: https://www.greener.com.br/estudo/estudo-estrategico-geracao-distribuida-2022-mercado-fotovoltaico-2-semestre/. Acesso em: 02/10/2023.
Liu, G., 2014. Sustainable feasibility of solar photovoltaic powered street lighting systems, International Journal of Electrical Power & Energy Systems, vol. 56, pp. 168–174.
Meyer, M. et al., 2017. Lighting brazilian cities: business models for energy eficiente public street lighting. Energy Sector Management Assistance Program, The World Bank, Washington.
Panguloori, R. Mishra, P.R., Kumar, S., 2013. Power distribution architectures to improve system efficiency of centralized medium scale PV street lighting system, Solar Energy, vol. 97, pp. 405-413, ISSN 0038-092X.
Pinter, G. et al., 2018. Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary, Energies, vol. 11. Governo do Estado de São Paulo, 2023. CDHU - Boletim referencial de custos, tabela de serviços, versão 191, São Paulo.
Terrich, T., Balsky, M., 2022. The Effect of Spill Light on Street Lighting Energy Efficiency and Light Pollution, Sustainability, vol. 14, iss. 9, art. 5376.
Urbanetz, J. J., 2010. Sistemas Fotovoltaicos Conectados à Redes de Distribuição Urbanas: Sua Influência na Qualidade da Energia elétrica e Análise dos Parâmetros que Possam Afetar a Conectividade, Tese de Doutorado, UFSC, Florianópolis.
Zajac, P., Przybylek, G., 2020. Lighting lamps in recreational areas – Damage and prevention, testing and modelling, Engineering Failure Analysis, vol. 115, art. 104693, ISSN 1350-6307.
Zilles, R. et al., 2012. Sistemas fotovoltaicos conectados à rede elétrica, Oficina de Textos, 1ª edição, São Paulo.