FIRE RISK ANALYSIS IN PHOTOVOLTAIC GENERATORS IN BUILDINGS USING FAULT TREE ANALYSIS
DOI:
https://doi.org/10.59627/cbens.2024.2450Keywords:
Fire in Photovoltaic Generators, Risk analysis, Fault TreeAbstract
This study focuses on the analysis of fire risks in photovoltaic generators in buildings, with an emphasis on the use of the Fault Tree technique. The research addresses the need to assess the risks associated with the growing adoption of photovoltaic solar energy, highlighting potential risk factors such as electrical overloads, short circuits, insulation failures and other unwanted events. The methodology involves collecting data, identifying unwanted events and building a Fault Tree, allowing the visual representation of cause and effect relationships. Mitigation measures have been identified, including appropriate design, monitoring, maintenance and protection against overloads and short circuits. This study highlights the importance of safety in photovoltaic systems, contributing to the promotion of solar energy as a safe, reliable and sustainable source of electricity. Risk analysis plays a key role in this process, ensuring that photovoltaic systems meet high safety standards.
Downloads
References
Alam, M. K., Khan, F., Johnson, J., & Flicker, J. (2015). A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques. IEEE Journal of Photovoltaics, 5(3), 982-997.doi:10.1109/JPHOTOV.2015.2397599
Brooks, B., Bunting, S., Cercos, F., Enea, D., Hostetter, J., Kateley, S., Kitchel, W., Tyler, B., Paiss, M., Sakamoto, V., & French, M. (2010). Fire Operations for Photovoltaic Emergencies. Retrieved from https://www.ncdoi.com/OSFM/RPD/PT/Documents/Coursework/PhotovoltaicEmergencies/Fire%20Ops%20W_PVs.pdf
Chiaramonte, A., Smith, A. D., & Hood, Z. J. (2016). Fire Safety of Solar Photovoltaic Systems in Australia. Worcester Polytechnic Institute. Retrieved from https://web.wpi.edu/Pubs/E-project/Available/E-project050116-222843/unrestricted/FireRisksOfSolarPV_ATA_D16_Final.pdf?_ga=2.92370264.419960244.1585651955-1828871872.1585651955
Coonick, C., Pester, S., Acott, J., Burroughs, M., Clarke, C., Sinclair, C., Weeks, C., Longfield, A., Crowder, D., Cotterell, M., Flanagan, M., Galvin, J., Holland, C., Mansi, P., Parsons, J., Shipp, M., & Smith, S. (2018). Fire and Solar PV Systems – Investigations and Evidence (P100874-1004 Issue 2.9). Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/786882/Fires_and_solar_PV_systems-Investigations_Evidence_Issue_2.9.pdf
Falvo, M. C., & Capparella, S. (2015). Safety issues in PV systems: Design choices for a secure fault detection and for preventing fire risk. Case Studies in Fire Safety, 3, 1-16. doi:10.1016/j.csfs.2014.11.002
Haegel, N. M., Margolis, R., Buonassisi, T., Feldman, D., Froitzheim, A., Garabedian, R., Green, M., Glunz, S., Henning, H.-M., Holder, B., Kaizuka, I., Kroposki, B., Matsubara, K., Niki, S., Sakurai, K., Schindler, R. A., Tumas, W., Weber, E. R., Wilson, G., Woodhouse, M., & Kurtz, S. (2017). Terawatt-scale photovoltaics: Trajectories and challenges. Science, 356(6334), 141. doi:10.1126/science.aal1288
Hu, Y. (2016). Research on the application of fault tree analysis for building fire safety of hotels. Procedia Engineering, 135, 524-530.
IEA – International Energy Agency. Biofuels for transport – an international perspective, 2021. Disponível em: http://www.iea.org/textbase/ nppdf/free/2021/biofuels2021.pdf. Acesso em 23 out. 2023.
Kang, J., Sun, L., & Soares, C. G. (2019). Fault Tree Analysis of floating offshore wind turbines. Renewable Energy, 133, 1455-1467.
Laukamp, H., Bopp, G., Grab, R., Wittwer, C., Häberlin, H., Heeckeren, B. v., Phillip, S., Reil, F., Schmidt, H., Sepanski, A., Thiem, H., & Vaassen, W. (2013). PV Fire Hazard - Analysis and Assessment of Fire Incidents. Paper presented at the 28th European Photovoltaic Solar Energy Conference and Exhibition, Paris.
Moraru, R. I., & Băbuţ, G. B. (2013). The use of fault tree in industrial risk analysis: A case study. Paper presented at the Proc. 1st Int. Conf. on Industrial and Manufacturing Technologies (Vouliagmeni).
Sepanski, A., Reil, F., Vaaßen, W., Janknecht, E., Hupach, U., Bogdanski, N., Heeckeren, B. v., Schmidt, H., Bopp, G., Laukamp, H., Grab, R., Philipp, S., Thiem, H., Huber, J., Haselhuhn, R., Häberlin, H., Krutzke, A., Neu, B., Richter, A., Bansemer, B., & Halfmann, M. (2018). Assessing Fire Risks in Photovoltaic Systems and Developing Safety Concepts for Risk Minimization. Retrieved from Cologne,Germany: https://www.energy.gov/sites/prod/files/2018/10/f56/PV%20Fire%20Safety%20Fire%20Guideline_Translation_V04%2020180614_FINAL.pdf
Smalley, J. (2015). What is a combiner box? Access date : 4th May 2020. Retrieved from https://www.solarpowerworldonline.com/2015/06/what-is-a-combiner-box/
Schmela, M. (2019). Global Market Outlook for Solar Power 2019–2023. SolarPower Europe (SPE, formerly known as EPIA) Press Release (www. solarpowereurope. org).
Strobl, C., & Meckler, P. (2010). Arc faults in photovoltaic systems. Paper presented at the 2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts.
Wu, Z., Hu, Y., Wen, J., Zhou, F., & Ye, X. (2020). A Review for Solar Panel Fire Accident Prevention in LargeScale PV Applications. IEEE Access, 8, 132466-132480. doi:10.1109/ACCESS.2020.3010212
Zhao, Y., Lehman, B., de Palma, J.-F., Mosesian, J., & Lyons, R. (2011). Challenges to overcurrent protection devices under line-line faults in solar photovoltaic arrays. Paper presented at the 2011 IEEE Energy Conversion Congress and Exposition.