PERFORMANCE OF THE HIGH-RESOLUTION WRF-SOLAR IN ESTIMATING GLOBAL HORIZONTAL IRRADIANCE IN THE CITY OF MACAPÁ-AP.

Authors

  • Ana Cleide Bezerra Amorim Instituto de Inovação SENAI - Energias Renováveis
  • Vanessa de Almeida Dantas Instituto de Inovação SENAI - Energias Renováveis
  • Jean Souza dos Reis Instituto de Inovação SENAI - Energias Renováveis
  • Nicolas de Assis Bose Instituto de Inovação SENAI - Energias Renováveis. Universidade Federal do Rio Grande do Sul, Instituto de Geociências.
  • Samira de Azevedo Santos Emiliavaca Instituto de Inovação SENAI - Energias Renováveis
  • Alan Rodrigues de Sousa Instituto de Inovação SENAI - Energias Renováveis

DOI:

https://doi.org/10.59627/cbens.2024.2476

Keywords:

Atmospheric Modeling, Solar Energy, Northern Region

Abstract

The diversification of the energetic matrix brings different benefits, and photovoltaic solar energy is a promising source of energy due to its scalability and modularity. The state of Amapá is located in the tropical region, where it receives a large amount of solar energy throughout the year. However, the lack of studies into the region's solar potential hinders the expansion of photovoltaic systems in the state. In assessing solar resources, atmospheric models have emerged as a key tool, such as the Weather Research Forecast (WRF). Version 4.3.1 of the WRF-Solar model, a specific version for solar energy applications, was used to simulate the Global Horizontal Irradiance (GHI) of the city of Macapá-AP, in the northern of Brazil The objective was to show preliminary results on the efficiency of the WRF-Solar model in estimating the seasonal GHI for the city of Macapá-AP, as well as to check whether a higher resolution improves the results of the simulations. The Typical Meteorological Year (TMY) was calculated using the Sandia method. The algorithm proposed by the Baseline Surface Radiation Network (BSRN) was used to process hourly data from the automatic meteorological station (EMA) of the National Institute of Meteorology (INMET) in the city of Macapá-AP. Two cumulus parameterizations were used to represent the region's climate. Input data from 1-hourly ERA5 reanalysis was used. The use of high-resolution data reduced the nRMSE of the GHI, especially during spring, from 22% to 17%. The reduction in RMSE was approximately 48.37 W.m-2 in spring. The high resolution WRF-Solar simulations showed more efficient estimates.

Downloads

References

ABSOLAR - Associação Brasileira de Energia Solar Fotovoltaica, 2023. Energia Solar Fotovoltaica no Brasil, Infográfico ABSOLAR n° 60. Disponível em: https://www.absolar.org.br/mercado/infografico/. Acesso em novembro de 2023.

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. L. de M., & Sparovek, G., 2013. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728. doi:10.1127/0941-2948/2013/0507

ANEEL ‐ Agência Nacional de Energia Elétrica, 2023. Capacidade de Geração no Brasil. BIG ‐ Banco de Informações de Geração. Disponível em http://www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Acesso em maio 2023.

Back, A. C. et al., 2019. Atlas Eólico e Solar: Ceará. Curitiba: Camargo Schubert; Fortaleza, ADECE/FIEC/SEBRAE, 188p.

Diniz, C., Cortinhas, L., Nerino, G., Rodrigues, J., Adami, M., Souza-Filho, P. W. M., 2019. Situação dos Manguezais Brasileiros: Três Décadas de Satélite. Sensoriamento Remoto, v. 808, n. 11. doi:10.3390/rs11070808.

Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of the Atmospheric Sciences, v. 46, p. 3077–3107.

Ferreira, N. S., 1996. Zona de Convergência Intertropical. Climanálise-Boletim de Monitoramento e Análise Climática. Edição comemorativa, s. l.], v. 10a. Disponível em: http://climanalise.cptec.inpe.br/~rclimanl/boletim/cliesp10a/zcit_1.html

Fountoukis, C., Martín-Pomares, L., Perez-Astudillo, D., Bachour, D., Gladich, I., 2018. Simulating global horizontal irradiance in the Arabian Peninsula: Sensitivity to explicit treatment of aerosols, Solar Energy, v. 163, p. 347 – 355. https://doi.org/10.1016/j.solener.2018.02.00

Grell, G. A., Devenyi, D., 2002. A generalized approach to parameterizing convection , combining ensemble and data assimilation techniques. Geophysical Research Letters,v. 29, n. 14, p. 1693.

Gueymard, C.A.; Jimenez, P.A., 2018. Validation of real-time solar irradiance simulations over Kuwait using WRF- solar. In: the 12th International Conference on Solar Energy for Buildings and Industry, EuroSun2018, Rapperswil, Switzerland.

Hall, I., Prairie, R., Aderson, H., Boes, E., 1978. Generation of Typical Meteorological Years for 26 SOLMET Stations. SAND78-1601. Albuquerque, NM: Sandia National Laboratories.

Hong, S.Y., Lim, J.O.J., 2006. The WRF single-moment 6-class microphysics scheme (WSM6). Journal of Korean Meteorological Society, v. 42, n. 2, p. 129-151.

Jiménez, P. A., Hacker, J. P., Dudhia, J., Haupt, S. E, Ruiz-Arias, J. A., Gueymard, C. A., Thompson, G., Eidhammer, G., Deng, A., 2016: WRF-Solar: Description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Amer. Meteor. Soc., 97, 1249-1264, https://doi.org/10.1175/BAMS-D-14-00279.1.

Kain, S. J., 2004. The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, v. 43, p. 170-181.

Kim, J. H., Jimenez, P. A., Dudhia, J., Yang, J., Sengupta, M., Xie, Y., 2020. Probabilistic Forecast of All-Sky Solar Radiation Using Enhanced WRF-Solar: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00-77693.

Kim, J. H.; Jimenez, P. A., Sengupta, M., Yang, J., Dudhia, J., Alessandrini, S., Xie, Y., 2022. The WRF-Solar Ensemble Prediction System to Provide Solar Irradiance Probabilistic Forecasts. Journal of Photovoltaics, v.12, n. 1.

Lara-Fanego, V., Ruiz-Arias, J.A., Pozo-Vásquez, D., Santos-Alamillos, F.J.; Tovar-Pescador, J., 2012. Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Solar Energy, Amsterdam, v. 86, p. 2200-2217.

Long, C. N., Shi, Y., 2008. “An Automated Quality Assessment and Control Algorithm for Surface Radiation Measurements”, The Open Atmospheric Science Journal, v.2, n.1, p.23–37. doi: 10.2174/1874282300802010023.

Mlawer, E.J., et al., 1997. Radiative Transfer for Inhomogeneous Atmospheres: RRTM, a Validated Correlated-k Model for the Longwave. Journal of Geophysical Research, 102, 16663. https://doi.org/10.1029/97JD00237

Monfort, E. et al., 2018. Atlas Solar Bahia, Curitiba: Camargo Schubert; Salvador: SECTI, SEINFRA, CIMATEC/SENAI, Brazil, 76p.

Nakanish, M.; Niino, H., 2006. An Improved Mellor-Yamada Level-3 Model: Its Numerical Stability and Aplicattion to a Regional Prediction of Advection Fog. Boundary Layer Meteorology, v. 119, n. 2, p. 397-407.

Nobre, M. T. C. M. et al., 2022. Atlas Eólico e Solar do estado do Rio Grande do Norte, Natal: Instituto SENAI de Inovação – Energias Renováveis (ISI-ER); Natal: Governo do Estado do Rio Grande do Nort, SEDEC, COORDENADORIA DE DESENVOLVIMENTO ENERGÉTICO, 212p.

Otto, S.A., Kadin, M., Casini, M., Torres, M.A. & Blenckner, T., 2018. A quantitative framework for selecting and validating food web indicators. Ecological Indicators, vol. 84, pp. 619-631, doi: 10.1016/j.ecolind.2017.05.045

Pereira, E. B., Martins, F. R., Gonçalves, A. R., Costa, R. S., Lima, F. L., Rüther, R., Abreu, S. L., Tiepolo, G. M., Pereira, S. V., Souza, J. G., 2017. Atlas brasileiro de energia solar. 2.ed. São José dos Campos: INPE. 80p. Disponível em: http://doi.org/10.34024/978851700089

Sengupta, M. et al., 2018. “The national solar radiation data base (NSRDB),” Renewable Sustain. Energy Rev., vol. 89, pp. 51–60.

Skamarock, W. C. A et al., 2021. Description of the Advanced Research WRF Model Version 4. NCAR/TN–556+STRNCAR TECHNICAL NOTE.

Skeiker, K., 2006. Comparison of Methodologies for TMY Generation Using 10 Years Data for Damascus, Syria. Damascus, Syria: Department od Scientific Services.

Tewari, M.,Wang, W., Dudhia, J., LeMone, M. A., Mitchell, K., 2005. NUMERICAL EXPERIMENTS WITH UPGRADED WRF/NOAHLSM MODEL.

Thaker, J.A., Höller, R., 2023. Evaluation of High Resolution WRF Solar. Energies.

Vilhena, J. E. S., Lima, R. B., Freitas, S. J. L., 2018. Climatologia do Amapá: quase um século de história. Rio de Janeiro: Gramma, 100p.

Wilcox, S., Marion, W., 2008. Users Manual for TMY3 Data Sets. National Renewable Energy Laboratory.

Wilks, D. S., 2006. Statistical Methods in the Atmospheric Sciences. International Geophysics Series. 2a. Edição, Estados Unidos da América, Academic Press, v. 91, 627 p.

Yang, J., Manajit, S., Yu, X., Jimenez, P. A., Ju-Hye, K., 2019. Adjoint Sensitivity of FARMS to the Forecasting Variables of WRF-Solar: Preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5D00-74756.

Zempila M.-M., Giannaros T.M., Bais A. and Melas D., 2016. Evaluation of WRF shortwave radiation parameterizations in predicting global horizontal irradiance in Greece. Renew. Energ. 86, 831-840. doi: 10.1016/j.renene.2015.08.057

Published

2024-09-20

How to Cite

Amorim, A. C. B., Dantas, V. de A., Reis, J. S. dos, Bose, N. de A., Emiliavaca, S. de A. S., & Sousa, A. R. de. (2024). PERFORMANCE OF THE HIGH-RESOLUTION WRF-SOLAR IN ESTIMATING GLOBAL HORIZONTAL IRRADIANCE IN THE CITY OF MACAPÁ-AP. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2476

Issue

Section

Anais