CAPACITY FACTOR REPRESENTATIVE OF THE OPERATION OF MULTIPLE DISTRIBUTED PHOTOVOLTAIC GENERATION UNITS
DOI:
https://doi.org/10.59627/cbens.2024.2496Keywords:
Distributed photovoltaic generation, Representation of multiple PV systems, Capacity factor estimationAbstract
This work aims to present a method to assess the representative capacity factor of the operation of multiple distributed photovoltaic systems in Florianópolis. The theoretical capacity factor of such systems was estimated based on global horizontal solar radiation data in Florianópolis, measured at INMET’s ground station. The representative capacity factor of the operation of multiple distributed photovoltaic systems in Florianópolis, participating in the “Bônus Fotovoltaico” Project, was calculated based on measurements of the photovoltaic power generated by the systems. In the 12 months of the analyzed period, the results show a difference between measured data and historical data (Atlas Solarimétrico) of the average daily global horizontal solar radiation of 0.63%. The theoretical daily average values of the capacity factor ranged from 9.64% (May) to 18.32% (December), while the measured daily average values ranged from 10.47% (May) to 20.66% (December). The annual average of the theoretical daily average capacity factor was 14.15%, a value similar to that adopted by ANEEL for Santa Catarina (14.1%), and the annual average of the measured daily average capacity factor was higher (15.34%). The value of PR equal to 0.75 adopted in this work was based on the value adopted by ONS to estimate the generation of photovoltaic systems installed in consumer units powered at low voltage. However, the values of the measured daily average capacity factor were higher than the theoretical ones in allmonths of the analyzed period, which may indicate that the value of PR=0.75 may be too conse rvative to estimate the hourly, daily, and monthly photovoltaic generation of the distributed photovoltaic systems in Florianópolis..
Downloads
References
ABSOLAR, 2023. Panorama da solar fotovoltaica no Brasil e no mundo. Disponível em: https://www.absolar.org.br/mercado/infografico/
ANEEL, 2012. RESOLUÇÃO NORMATIVA Nº 482, DE 17 DE ABRIL DE 2012.
ANEEL, 2022. LEI Nº 14.300.
ANEEL, 2022. Nota Técnica n° 67/2022-SRM/ANEEL
ANEEL, 2023. Relação de empreendimentos de Geração Distribuída.
Antoniolli, A.F.G.; Montenegro, A. A.; Zomer, C. D.; Rüther, R., 2016. Avaliação técnica e econômica entre sistemas fotovoltaicos aplicados a edificações (BAPV) e sistemas idealmente instalados para máxima geração anual, VI Congresso Brasileiro de Energia Solar, Belo Horizonte.
Antoniolli, Andrigo Filippo, Naspolini, Helena Flávia, De Abreu, João Frederico, Rüther, Ricardo, 2022. Development of technical and statistical algorithm using Business Intelligence tools for energy yield assessment of large rooftop photovoltaic system ensembles, Sustainable Energy Technologies and Assessments, v. 49, p. 101686.
Barchi, G., Pierro, M., & Moser, D. (2021). The impact of photovoltaic power estimation modeling on distribution grid voltages. 2021 IEEE International Conference on Environment and Electrical Engineering and 2021 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe).
CELESC, 2017. Projeto Bônus Fotovoltaico. Disponível em: http://bonusfotovoltaico.celesc.com.br/.
Chao, P., Li, W., Liang, X., Shuai, Y., Sun, F., & Ge, Y. (2020). A comprehensive review on dynamic equivalent modeling of large photovoltaic power plants. Solar Energy (Phoenix, Ariz.), 210, 87–100. https://doi.org/10.1016/j.solener.2020.06.051
Ding, M., Xu, Z., Wang, W., Wang, X., Song, Y., & Chen, D. (2016). A review on China׳s large-scale PV integration: Progress, challenges and recommendations. Renewable and Sustainable Energy Reviews, 53, 639–652. https://doi.org/10.1016/j.rser.2015.09.009
EPE, 2022. Balanço Energético Nacional - Manual Metodológico.
EPE, 2023. Modelo de Mercado da Micro e Minigeração Distribuída (4MD): Metodologia – Versão 1ª Revisão Quadrimestral da Carga para o Planejamento Anual da Operação Energética PLAN 2023 - 2027.
Meng, H., Ye, X., Yang, M., Song, X., Su, Z., Liu, W., Luo, L., & Zhao, H. (2017). Equivalent modeling and simulation for PV system on dynamic clustering equivalent strategy. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society.
ONS, 2022. PEN- Plano da Operação Energética 2023. (2023, outubro 8). Disponível em: https://www.ons.org.br/AcervoDigitalDocumentosEPublicacoes/Apresenta%C3%A7%C3%A3o%20PEN%202023.pdf
Pereira, E. B.; Martins, F. R.; Gonçalves, A. R.; Costa, R. S.; Lima, F. L.; Rüther, R.; Abreu, S. L.; Tiepolo, G. M.; Pereira, S. V.; Souza, J. G., 2017. Atlas Brasileiro de Energia Solar. 2.ed. São José dos Campos: INPE.
Pierro, M., Belluardo, G., Ingenhoven, P., Cornaro, C., & Moser, D. (2017). Inferring the Performance Ratio of PV systems distributed in an region: a real-case study in South Tyrol. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC).
Pierro, M., De Felice, M., Maggioni, E., Moser, D., Perotto, A., Spada, F., & Cornaro, C. (2017). Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data. Solar Energy (Phoenix, Ariz.), 158, 1026–1038. https://doi.org/10.1016/j.solener.2017.09.068
R. Perez, P.Ineichen, R. Seals, J. Michalsky, R. Stewart, 1990. Modeling Daylight Availability and Irradiance Component from Direct and Global Irradiance. Solar Energy 44, no 5, pp 271-289.
Sossan, F., Scolari, E., Gupta, R., & Paolone, M. (2019). Solar irradiance estimations for modeling the variability of photovoltaic generation and assessing violations of grid constraints: A comparison between satellite and pyranometers measurements with load flow simulations. Journal of Renewable and Sustainable Energy, 11(5).