PERFORMANCE ANALYSIS OF PHOTOVOLTAIC-THERMAL HYBRID SOLAR COLLECTOR PROTOTYPES

Authors

  • Arthur Araújo Maximo Pontifícia Universidade Católica de Minas Gerais
  • Elisa Ishitani Melo Pontifícia Universidade Católica de Minas Gerais
  • Yuji Matsui Noé Pontifícia Universidade Católica de Minas Gerais
  • Daniel Sena Braga Pontifícia Universidade Católica de Minas Gerais
  • Vinicius Augusto Camata Santana Pontifícia Universidade Católica de Minas Gerais
  • Antonia Sonia Alves Cardoso Diniz Pontifícia Universidade Católica de Minas Gerais

DOI:

https://doi.org/10.59627/cbens.2024.2514

Keywords:

Thermal solar collector, Photovoltaic solar collector, PVT collector

Abstract

The supply of electricity demand using renewable energy sources has grown a lot, due to the environmental impacts caused by fossil sources. Hybrid thermal photovoltaic (PVT) collectors have been studied and developed in recent decades for energy cogeneration. It uses the solar collector to generate thermal energy, and photovoltaic modules to generate electrical energy, simultaneously. Thermal energy is obtained by cooling the photovoltaic module, through the exchange of heat from solar radiation with circulating air and water, used for cooling. While electrical energy is obtained through the optical absorption of solar cells, which converts solar irradiance into electrical energy. The objective of this work is the comparative study of the electrical and thermal pSerformance of PVT hybrid collectors, using different photovoltaic technologies. In this work, two PVT prototypes were developed with a flat solar collector, one with a photovoltaic module made of polycrystalline silicon and the other made of cadmium telluride. Initially, internal pressure tests were carried out on the PVT's collectors, to detect pressure variations and unwanted leaks inside the piping. The electrical parameters were then measured, using the I-V curve tracer, to evaluate the electrical efficiency. Finally, the thermal efficiency test was carried out on the PTVs, using the continuous solar simulator. All tests were carried out in the GREEN/PUC Minas laboratory. The thermal and electrical efficiency results of the developed PVT collectors were compared with commercial devices. The thermal efficiency values for both PVT collectors were very low, when compared to the efficiency of collectors sold in Brazil, from abroad, requiring further improvement in the devices developed to improve the performance of the prototypes in relation to other similar systems.

Downloads

Author Biographies

Arthur Araújo Maximo, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

Elisa Ishitani Melo, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

Yuji Matsui Noé, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

Daniel Sena Braga, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

Vinicius Augusto Camata Santana, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

Antonia Sonia Alves Cardoso Diniz, Pontifícia Universidade Católica de Minas Gerais

Departamento de Engenharia Mecânica.

References

Agência Nacional de Energia Elétrica - ANEEL, 2023. Sistema de Informações de Geração ANEEL – SIGA. Brasília, Brasil.

Barbose, G. L. et al., 2023. Pricing and Design Trends for Distributed Photovoltaic Systems in the United States 2023 Edition.

Bergene, T., Løvvik, O. M., 1995. Model calculations on a flat-plate solar heat collector with integrated solar cells, Solar Energy, vol. 55, n. 6, pp. 453-462.

de Paiva, E. S. A. et al., 2017. Análise Comparativa da Eficiência Térmica de Coletores A, B e C com Penetração de Água, Revista Brasileira de Energia Solar, vol. 8, n. 2, pp. 81-87.

Duffie, J.A., Beckman, W.A., 2013. Solar Engineering of Thermal Processes: Fourth Edition, Solar Engineering of Thermal Processes: Fourth Edition.

European Photovoltaic Industry Association (EPIA), 2022. Global market outlook for solar power: 2022-2026. Bruxelas.

Fthenakis, V. M., Lynn, P. A., 2018. Electricity from sunlight: photovoltaic-systems integration and sustainability, John Wiley & Sons.

Micheli, L., 2022. The temperature of floating photovoltaics: Case studies, models and recent findings, Solar Energy 242, 234–245.

NREL, 2023. Champion Photovoltaic Module Efficiency Chart. Disponível em: <https://www.nrel.gov/pv/module-efficiency.html>. Acesso em 27 de nov. de 2023.

Pereira, E. M. D. et al., 2006. Curso de capacitação em aquecimento solar: Projeto SolBrasil: Manual do Professor. Belo Horizonte: GREEN/PUC Minas.

Pinho, J. T. et al., 2014. Manual de engenharia para sistemas fotovoltaicos, Rio de Janeiro, vol. 1, pp. 47-499.

Tyagi, V. V., Kaushik, S. C., Tyagi, S. K., 2012. Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology, Renewable and Sustainable Energy Reviews, vol. 16, n. 3, pp. 1383-1398.

Villalva, M. G., 2015. Energia Solar Fotovoltaica: Conceitos e Aplicações. 2. ed. São Paulo: Érica.

Wang, Y. et al., 2023. Research progress in doped absorber layer of CdTe solar cells, Renewable and Sustainable Energy Reviews, p. 113427.

Wolf, M., 1976. Performance analyses of combined heating and photovoltaic power systems for residences, Energy Conversion, v. 16, n. 1-2, p. 79-90.

Zondag, H. A. et al., 2006. PVT roadmap. A European guide for the development and market introduction of PVT Technology.

Published

2024-09-20

How to Cite

Maximo, A. A., Melo, E. I., Noé, Y. M., Braga, D. S., Santana, V. A. C., & Diniz, A. S. A. C. (2024). PERFORMANCE ANALYSIS OF PHOTOVOLTAIC-THERMAL HYBRID SOLAR COLLECTOR PROTOTYPES. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2514

Issue

Section

Anais