CHALLENGES AND SOLUTIONS FOR THE DESIGN AND CONSTRUCTION OF A SOLAR BUILDING IN BRAZIL

Authors

  • Giulia Pimentel Cia Koike Universidade Federal de Santa Catarinaz
  • Isadora Pauli Custódio Universidade Federal de Santa Catarina
  • Ricardo Rüther Universidade Federal de Santa Catarina

DOI:

https://doi.org/10.59627/cbens.2024.2529

Keywords:

Solar Architecture, BIPV, Construction

Abstract

The article addresses the implementation of photovoltaic (PV) solar energy systems in buildings, focusing on Building C of the Laboratório Fotovoltaica/UFSC, located in Florianópolis/SC, as it highlights the promising scenario of solar energy in Brazil, with an installed capacity of 35 GWp, mainly in distributed generation. The text emphasizes the efficiency and cost reduction of PV systems, encouraged by regulations such as ANEEL REN 1000/2021 and Law No. 14300/2022. The article underscores the complexity of implementing Building-Integrated Photovoltaics (BIPV) compared to Building-Applied Photovoltaics (BAPV), especially in the Brazilian context, where the availability of BIPV products is still limited. Building C is presented as an innovative solar architecture project, overcoming challenges from the design phase to the construction phase and even maintenance. Specific challenges faced during the construction of Building C are discussed, in which the treatment of waterproofing and the adequacy of the PV modules' fixing structures on the building's roof required tailor-made solutions (rubber and polyurethane joints, structural reinforcements and manufacturing of modules and special water conductors) and generated delays during construction. The search for companies specialized in both construction and solar energy is essential to guide future projects and drive the evolution of solar energy application technology in buildings in the Brazilian market. In conclusion, the article highlights future concerns, such as extensive cleaning and maintenance of PV modules, and emphasizes the ongoing need for innovation to facilitate the successful integration of PV systems into buildings in the country. The work of the Laboratório Fotovoltaica/UFSC is presented as a catalyst for transforming the sector, encouraging a more comprehensive and efficient approach to implementing BIPV projects in Brazil.

Downloads

Author Biographies

Giulia Pimentel Cia Koike, Universidade Federal de Santa Catarinaz

Departamento de Engenharia Civil.

Isadora Pauli Custódio, Universidade Federal de Santa Catarina

Departamento de Engenharia Civil.

Ricardo Rüther, Universidade Federal de Santa Catarina

Departamento de Engenharia Civil.

References

ANEEL, 2021. Resolução Homologatória no 1.000, de 7 de dezembro de 2021. ANEEL, 2023. SIGA – Sistema de Informações de Geração da ANEEL.

URL https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel.

Bahaj, A. S.; James, P. A. B.; Jentsch, M. F. Photovoltaics: added value of architectural integration. Proceedings of the Institution of Civil Engineers - Energy, [S. l.], v. 160, n. 2, p. 59–69, 2007. Disponível em: https://doi.org/10.1680/ener.2007.160.2.59

Becker, G. et al. High Quality Solutions of Building-Integrated Photovoltaics (BIPV) – Results of the World Wide Competition in 2017. In: 2018, Brussels. 35th European Photovoltaic Solar Energy Conference and Exhibition.

Brussels: [s. n.], 2018. p. 1828–1832. Disponível em: https://doi.org/10.4229/35thEUPVSEC20182018-6BV.1.42

Becquerel Institute. BIPV market and stakeholder analysis 2019. [s.l: s.n.]. Disponível em: <https://bipvboost.eu/public-reports/>.

Bonomo, P.; DE BERARDINIS, P.; FRONTINI, F. Analysis of BIPV case-studies through a multicriteria evaluation tool. In: 2013, Paris, France. 28th European Photovoltaic Solar Energy Conference and Exhibition. Paris, France: [s. n.], 2013. p. 4373–4379. Disponível em: https://doi.org/10.4229/28thEUPVSEC2013-5CV.7.12

Brasil. Lei nº 14.300, de 6 de janeiro de 2022. Institui o marco legal da microgeração e minigeração distribuída, o Sistema de Compensação de Energia Elétrica (SCEE) e o Programa de Energia Renovável Social (PERS); altera as Leis nºs 10.848, de 15 de março de 2004, e 9.427, de 26 de dezembro de 1996; e dá outras providências. Brasília, DF: Diário Oficial da União, 2022.

Celadyn, W.; Filipek, P. Investigation of the Effective Use of Photovoltaic Modules in Architecture. Buildings, [S. l.], v. 10, n. 145, p. 20, 2020. Disponível em: https://doi.org/10.3390/buildings10090145

Cronemberger, J. et al. BIPV technology application: Highlighting advances, tendencies and solutions through Solar Decathlon Europe houses. Energy and Buildings, [S. l.], v. 83, p. 44–56, 2014. Disponível em: https://doi.org/10.1016/j.enbuild.2014.03.079

De Berardinis, P.; Bonomo, P. Towards a system for evaluation of the project of PV integration in buildings. BIPV.tool. In: 2012, Frankfurt, Germany. 27th European Photovoltaic Solar Energy Conference and Exhibition. Frankfurt, Germany: [s. n.], 2012. p. 4183–4187. Disponível em: https://doi.org/10.4229/27thEUPVSEC2012-5BV.1.5

Devetaković, M. et al. Photovoltaics on landmark buildings with distinctive geometries. Applied Sciences, [S. l.], v. 10, n. 19, p. 22, 2020. Disponível em: https://doi.org/10.3390/app10196696

EPE, 2023. Balanço Energético Nacional 2023: Relatório síntese, ano base 2022.

Florio, P.; Roecker, C.; MUNARI PROBST, M. C. Urban acceptability of solar installations: LESO-QSV GRID, a software tool to support municipalities. In: 2015, Lausanne, Switzerland. CISBAT 2015 International Conference “Future Buildings and Districts - Sustainability from Nano to Urban Scale”. Lausanne, Switzerland: [s. n.], 2015. p. 981–986. Disponível em: https://doi.org/10.13140/RG.2.1.2017.0728

GREENER, 2023. Estudo Estratégico: Geração Distribuída 2023 | Dados do 1º semestre 2023 / Setembro 2023. Disponível em: https://www.greener.com.br/estudo/estudo-estrategico-geracao-distribuida-setembro-2023-dados-do-1o-semestre-2023/

Hagemann, I. Architectural considerations for building-integrated photovoltaics. Progress in Photovoltaics: Research and Applications, [S. l.], v. 4, p. 247–258, 1996. Disponível em: https://doi.org/10.1002/(SICI)1099-159X(199607/08)4:4<247::AIDPIP135>3.0.CO;2-E

Hagemann, I. Examples of successful architectural integration of PV: Germany. Progress in Photovoltaics: Research and Applications, [S. l.], v. 12, n. 6, p. 461–470, 2004. Disponível em: https://doi.org/10.1002/pip.561 https://doi.org/10.1080/00038628.2011.590052

IEA PVPS. Task 7 - Photovoltaic power systems in the built environment. [S. l.: s.n.].

IEA SHC. Task 41 A.2 - Solar Energy Systems in Architecture: integration criteria and guidelines. [S. l.: s. n.]. Disponível em: https://task41.ieashc.org/Data/Sites/1/publications/T41DA2-Solar-Energy-Systems-in-Architecture28March2013.pdf.

IEA SHC. Task 51 C.3 - Lessons Learnt from Case Studies of Solar Energy in Urban Planning. [S. l.: s. n.]. Disponível em: https://doi.org/10.18777/ieashc-task51-2018-0003.

IRENA. Renewable Energy Statistics 2022. Abu Dhabi: [s.n.]. Disponível em: <https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Apr/IRENA_RE_Capacity_Statistics_2022.pdf?rev=460f190dea15442eba8373d9625341ae>.

ISE, 2023. Photovoltaics Report.

Kaan, H.; Reijenga, T. Photovoltaics in an architectural context. Progress in Photovoltaics: Research and Applications, [S. l.], v. 12, n. 6, p. 395–408, 2004. Disponível em: https://doi.org/10.1002/pip.554

Kosoric, V.; Wittkopf, S.; Huang, Y. Testing a design methodology for building integration of photovoltaics (PV) using a PV demonstration site in Singapore. Architectural Science Review, [S. l.], v. 54, n. 3, p. 192–205, 2011. Disponível em:

Lobaccaro, G. et al. A cross-country perspective on solar energy in urban planning: Lessons learned from international case studies. Renewable and Sustainable Energy Reviews, [S. l.], v. 108, p. 209–237, 2019. Disponível em: https://doi.org/10.1016/j.rser.2019.03.041

Munari Probst, M. C.; Roecker, C. Criteria and policies to master the visual impact of solar systems in urban environments: The LESO-QSV method. Solar Energy, [S. l.], v. 184, n. September 2018, p. 672–687, 2019. Disponível em: https://doi.org/10.1016/j.solener.2019.03.031

Munari Probst, M. C.; Roecker, C. Solar Energy Promotion & Urban Context Protection: Leso-QSV (Quality-Site-Visibility) Method. In: 2015, Bologna, Italy. Plea 2015: Architecture in (R)evolution. Bologna, Italy: [s. n.], 2015.

Munari Probst, M. C.; Roecker, C. Urban acceptability of building integrated solar systems: LESO-QSV approach. In: 2011, Kassel, Germany. 30th ISES Biennial Solar World Congress 2011, SWC 2011. Kassel, Germany: [s. n.], 2011. p. 4359–4367. Disponível em: https://doi.org/10.18086/swc.2011.27.10

Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and Buildings, [S. l.], v. 43, n. 12, p. 3592–3598, 2011. Disponível em: https://doi.org/10.1016/j.enbuild.2011.09.032

Pereira, E.B., Martins, F.R., Gonçalves, A.R., Costa, R.S., Lima, F.J.L., Rüther, R., Abreu, S.L., Tiepolo, G.M., Pereira, S.V., Souza, J.G. de, 2017. Atlas Brasileiro de Energia Solar. São José dos Campos - Brasil.

Polo Lopez, C. et al. PV and façade systems for the building skin. Analysis of design effectiveness and technological features. In: 2014, Amsterdam, Netherlands. 29th European Photovoltaic Solar Energy Conference and Exhibition. Amsterdam, Netherlands: [s. n.], 2014. p. 3613–3618. Disponível em: https://doi.org/10.4229/EUPVSEC20142014-6DO.7.3

Sánchez-Pantoja, N.; Vidal, R.; Pastor, M. C. Aesthetic perception of photovoltaic integration within new proposals for ecological architecture. Sustainable Cities and Society, [S. l.], v. 39, p. 203–214, 2018. Disponível em: https://doi.org/10.1016/j.scs.2018.02.027

Schoen, T. et al. Status Report of Task 7 of the EIA PV Power Systems Program. In: 2000, Glasgow. 18th European Photovoltaic Solar Energy Conference and Exhibition. Glasgow: [s. n.], 2000. p. 1–4.

Scognamiglio, A. “Photovoltaic landscapes”: Design and assessment. A critical review for a new transdisciplinary design vision. Renewable and Sustainable Energy Reviews, [S. l.], v. 55, p. 629–661, 2016. Disponível em: https://doi.org/10.1016/j.rser.2015.10.072

Scognamiglio, A. A trans-disciplinary vocabulary for assessing the visual performance of BIPV. Sustainability, [S. l.], v. 13, n. 10, p. 38, 2021. Disponível em: https://doi.org/10.3390/su13105500

Scognamiglio, A., Garde, F. (2016). Photovoltaics’ architectural and landscape design options for Net Zero Energy Buildings, towards Net Zero Energy Communities: spatial features and outdoor thermal comfort related considerations. Progress in Photovoltaics: Research and Applications, 24, 477–495. https://doi.org/10.1002/pip.2563

Scognamiglio, A.; Garde, F. Photovoltaics’ architectural and landscape design options for Net Zero Energy Buildings, towards Net Zero Energy Communities: spatial features and outdoor thermal comfort related considerations. Progress in Photovoltaics: Research and Applications, [S. l.], v. 24, p. 477–495, 2016. Disponível em: https://doi.org/10.1002/pip.2563

Scognamiglio, A.; Privato, C. Starting points for a new cultural vision of BIPV. In: 2008, Valencia, Spain. 23rd European Photovoltaic Solar Energy Conference. Valencia, Spain: [s. n.], 2008. p. 3222–3233. Disponível em: https://doi.org/10.4229/23rdEUPVSEC2008-5BP.1.5

Scognamiglio, A.; Røstvik, H. N. Photovoltaics and zero energy buildings: a new opportunity and challenge for design. Progress in Photovoltaics: Research and Applications, [S. l.], v. 21, n. 6, p. 1319–1336, 2012. Disponível em: https://doi.org/10.1002/pip.2286

Supsi; Becquerel Institute. Building Integrated Photovoltaics: A practical handbook for solar buildings’ stakeholders. Status Report 2020. [s.l: s.n.].

Tablada, A. Et al. Architectural quality of the productive façades integrating photovoltaic and vertical farming systems: Survey among experts in Singapore. Frontiers of Architectural Research, [S. l.], v. 9, n. 2, p. 301–318, 2020. Disponível em: https://doi.org/10.1016/j.foar.2019.12.005

The European Parliament and the Council of the European Union. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. [s.l: s.n.]. Disponível em: <https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32018L0844>.

Torres-Sibille, A. del C. et al. Aesthetic impact assessment of solar power plants: An objective and a subjective approach. Renewable and Sustainable Energy Reviews, [S. l.], v. 13, n. 5, p. 986–999, 2009. Disponível em: https://doi.org/10.1016/j.rser.2008.03.012

Xu, R.; Wittkopf, S. Visual assessment of BIPV retrofit design proposals for selected historical buildings using the saliency map method. Journal of Facade Design and Engineering, [S. l.], v. 2, n. 3–4, p. 235–254, 2015. Disponível em: https://doi.org/10.3233/fde150022

Xu, R.; Wittkopf, S.; Roeske, C. Quantitative evaluation of BIPV visual impact in building retrofits using saliency models. Energies, [S. l.], v. 10, n. 5, 2017. Disponível em: https://doi.org/10.3390/en10050668

Published

2024-09-20

How to Cite

Koike, G. P. C., Custódio, I. P., & Rüther, R. (2024). CHALLENGES AND SOLUTIONS FOR THE DESIGN AND CONSTRUCTION OF A SOLAR BUILDING IN BRAZIL. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2529

Issue

Section

Anais