COMPARATIVE ANALYSIS OF DESALINATION TECHNOLOGIES FOR SMALL SCALE APPLICATIONS

Authors

  • Luis H. Vera Universidad Nacional del Nordeste
  • Emilio Scozzina Unterholzner Universidad Nacional del Nordeste
  • Héctor G. Lorenzo Universidad Nacional del Nordeste
  • Manuel Cáceres Universidad Nacional del Nordeste
  • Andrés Firman Universidad Nacional del Nordeste

DOI:

https://doi.org/10.59627/cbens.2024.2543

Keywords:

Solar Energy, Water Desalination, Humidification – Dehumidification

Abstract

The growing demand for drinking water has led to the exploration of sustainable and efficient alternatives in the desalination process. Conventional methods, such as reverse osmosis and flash multistage evaporation, face challenges in small-scale applicability, especially in rural areas with electricity access restrictions. This article focuses on comparing these technologies with the innovative air humidification-dehumidification (HDH) process for the production of 100 liters/hour of desalinated water. Mass and energy balances were used to evaluate the efficiency of each technology, specifically the amount of thermal energy needed per volume of desalinated water, and the area of solar collectors necessary for the process. Open and closed circuit configurations with and without regeneration were considered. Initial results reveal that in an open-loop configuration without regeneration, the thermal energy consumption in the HDH process is 3,6 and 5,5 times higher compared to the MSF and MED processes, espectively. In conclusion, despite higher thermal energy consumption, compared to MED and RO technologies, the HDH process presents significant advantages in terms of reduced initial and maintenance costs. Furthermore, the modularity of the system allows it to be adapted to various water demands, from small quantities to more significant volumes. In this way, the HDH process is an effective and accessible solution for water desalination in areas with limited access to electricity and maintenance. The combination of low costs and the use of renewable sources reinforce the potential for implementation of this technology in diverse environments, from rural areas to more extensive applications.

Downloads

Author Biographies

Luis H. Vera, Universidad Nacional del Nordeste

Departamento de Termodinámica y Máquinas Térmicas – Facultad de Ingeniería – Grupo en Energías Renovables – Facultad de Ciencias Exactas.

Emilio Scozzina Unterholzner, Universidad Nacional del Nordeste

Departamento de Termodinámica y Máquinas Térmicas – Facultad de Ingeniería.

Héctor G. Lorenzo, Universidad Nacional del Nordeste

Departamento de Termodinámica y Máquinas Térmicas – Facultad de Ingeniería.

Manuel Cáceres, Universidad Nacional del Nordeste

Grupo en Energías Renovables – Facultad de Ciencias Exactas.

Andrés Firman, Universidad Nacional del Nordeste

Grupo en Energías Renovables – Facultad de Ciencias Exactas.

References

Abdullah A. S., Essa F. A., Omara Z. M., Bek M. A., 2018. Performance evaluation of a humidification–dehumidification unit integrated with wick solar stills under different operating conditions, Desalination, 441.

Al-Dadaha R.K., Youssefa P. G., Mahmouda S. M., 2014. Comparative Analysis of desalination technologies, Energy Procedia, 61, 2604-2607.

Alghoul M. A., Poovanaesvaran P., Sopian K., Sulaiman M.Y., 2009. Review of brackish water reverse osmosis (BWRO) system designs, Renewable and Sustainable Energy Reviews, 13, 2661–2667.

Al-Hallaj S., Farid M. M., Tamimi A. R., 1998. Solar desalination with a humidification--dehumidification cycle: performance of the unit, Desalination, 120, 273-280.

Al-Karaghouli A., Kazmerski L., 2013. Energy consumption and water production cost of conventional and renewable energy powered desalination processes, Renewable and Sustainable Energy Review, 24, 343-356.

Ministerio de Salud de la Argentina: Calidad del agua, 2022. URL: www.argentina.gob.ar/salud/ambiental/agua

Curto D., Franzitta V., Guercio A., 2021. A review of the water desalination technologies. Applied Science, 11, 607.

Dias de Carvalho M., Selia dos Reis Coimbra J., Silva Miranda Lemos T., Alguilar Bellido J. D., Oliveira Siquiera A. M., 2020. A review of humidification-dehumidification desalination systems, International Journal of Research.

Esfahani I. J., Rashidi J., Ifaei P., Yoo C., 2015. Efficient thermal desalination technologies with renewable energy systems: a state of the art review, Korean Journal Chemical Engineering.

Farid M. M., Parekh S., Selman J. R., Al-Hallajb S., 2002. Solar desalination with a humidification-dehumidification cycle: mathematical modeling of the unit, Desalination, 151,153-164.

Fritzmann C., Löwenberg J., Wintgens T., Melin T., 2007. State of the art of reverse osmosis desalination, Desalination.

Gattey D. P., 2002. Understaning Psychrometrics, ASHRAE.

Ghermandi A., Messalem R. 2012. Solar driven desalination with reverse osmosis: the state of the art, Desalination and Water Treatment, 7, 1-3, 285-296.

Hay J. E., Davies J. A., 1980. Calculation of the Solar Radiation Incident on a inclined surface, in Proceedings of the first Canadian Solar Radiation Data Workshop, Ministery of Supply and Service, Toronto, Canada, p. 59.

Lawal D. U., Qasem N. A. A., 2020. Humidification-dehumidification desalination systems driven by thermal-based renewable and low-grade energy sources: A critical review, Renewable and Sustainable Energy Reviews, 125.

Mayere A., 2018. Analysis of Humidification Dehumidification Desalination System, The International Journal of Engineering and Science (IJES)

Mahmoud M. S., Farrag T. E., Mohamed W. A., 2013. Experimental and theoretical model for water desalination by humidification - dehumidification (HDH), Procedia Environmental Sciences, 17, 503 – 512.

Mathioulakis E., Belessiotis V., Delyannis E., 2007, Desalination by using alternative energy: review and state of the art. Desalination, 203, 346-365.

Mekonnen, M. M., Hoekstra A. Y., 2016. Four billion people facing severe water scarcity, Science Advances, 2,1-6.

Narayan G. P., Sharqawy M. H., Summers E. K., Lienhard J. H., Zubair S. M., Antar M. A. 2010., The potential of solar driven humidification dehumidification desalination for small scale decentralized water production, Renewable and Sustainable Energy Reviews, 14, 1187-1201.

Nawayseh N. K., Farid M. M., Al-Hallaj S., Al-Timimi A. R., 1999. Solar desalination based on humidication process I. Evaluating the heat and mass transfer coefficients, Energy conversion and management. 40, 1423-1439.

Our World in Data., 2023. Installed global renewable energy capacity by technology, Dirección URL: [10 de agosto de 2023]

Pérez-González A., Urtiaga A.M., Ibáñez R., Ortiz I., 2012. State of the art and review on the treatment technologies of water reverse osmosis concentrates, Water Research, 46, 267-283.

Reindl D.T. , Beckman W.A. , Duffie J.A., 1990. Diffuse fraction correlations, Solar Energy, v.45, 1, pp. 1-7.

Saadat A. H. M., Islam M. S., Islam M. S., Parvin F., Sultana A., 2018. Desalination technologies for developing countries: A review, Journal of Scientific Research, 10, 1, 77-97.

Sharon H. y Reddy K. S., 2015. A review of solar energy driven desalination technologies, Renewable and Sustainable Energy Reviews, 41, 1080-1118.

Song J., Li T., Wright-Contreras L., Wing-Keung Law A., 2017. A review of the current status of small-scale seawater reverse osmosis desalination, Water International.

UNESCO, 2023. Alianzas y cooperación por el agua. Resumen ejecutivo. URL: unesdoc. unesco.org/ark:/48223/pf0000384657_spa [consulta: 07 de agosto de 2023]

Vadalia B. V., Pate P., Patel J., 2013. Solar Humidification-Dehumidification technology for pure water production. International Journal for Scientific Research and Development, 1, 10, 2321-0613.

Vicuña, S., Daniele, L., Farías, L., González, H., Marquet, P. A., Palma-Behnke, R., Stehr, A., Urquiza, A., Wagemann, E., Arenas-Herrera, M. J., Bórquez, R., Cornejo-Ponce, L., Delgado, V., Etcheberry, G., Fragkou, M. C., Fuster, R., Gelcich, S., Melo, O., Monsalve, T., Winckler, P., 2022. Desalinización: Oportunidades y desafíos para abordar la inseguridad hídrica en Chile. Comité Asesor Ministerial Científico sobre Cambio Climático; Ministerio de Ciencia, Tecnología, Conocimiento e Innovación.

World Health Organization, 2021. Guidelines for Drinking-water Quality, 3ª edición, pp. 218, WHO Press, Geneva.

Published

2024-09-20

How to Cite

Vera, L. H., Unterholzner, E. S., Lorenzo, H. G., Cáceres, M., & Firman, A. (2024). COMPARATIVE ANALYSIS OF DESALINATION TECHNOLOGIES FOR SMALL SCALE APPLICATIONS. Anais Congresso Brasileiro De Energia Solar - CBENS. https://doi.org/10.59627/cbens.2024.2543

Issue

Section

Anais